934 resultados para histone H4 acetylation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

NK314 is a novel synthetic benzo[c]phenanthridine alkaloid that is currently in clinical trials as an antitumor compound, based on impressive activities in preclinical models. However, its mechanism of action is unknown. The present investigations were directed at determining the mechanism of action of this agent and cellular responses to NK314. My studies demonstrated that NK314 intercalated into DNA, trapped topoisomerase IIα in its cleavage complex intermediate, and inhibited the ability of topoisomerase IIα to relax super-coiled DNA. CEM/VM1 cells, which are resistant to etoposide due to mutations in topoisomerase IIα, were cross-resistant to NK314. However, CEM/C2 cells, which are resistant to camptothecin due to mutations in topoisomerase I, retained sensitivity. This indicates topoisomerase IIα is the target of NK314 in the cells. NK314 caused phosphorylation of the histone variant, H2AX, which is considered a marker of DNA double-strand breaks. DNA double-strand breaks were also evidenced by pulsed-field gel electrophoresis and visualized as chromosomal aberrations after cells were treated with NK314 and arrested in mitosis. Cell cycle checkpoints are activated following DNA damage. NK314 induced significant G2 cell cycle arrest in several cell lines, independent of p53 status, suggesting the existence of a common mechanism of checkpoint activation. The Chk1-Cdc25C-Cdk1 G2 checkpoint pathway was activated in response to NK314, which can be abrogated by the Chk1 inhibitor UCN-01. Cell cycle checkpoint activation may be a defensive mechanism that provides time for DNA repair. DNA double-strand breaks are repaired either through ATM-mediated homologous recombination or DNA-PK-mediated non-homologous end-joining repair pathways. Clonogenic assays demonstrated a significant decrease of colony formation in both ATM deficient and DNA-PK deficient cells compared to ATM repleted and DNA-PK wild type cells respectively, indicating that both ATM and DNA-PK play important roles in the survival of the cells in response to NK314. The DNA-PK specific inhibitor NU7441 also significantly sensitized cells to NK314. In conclusion, the major mechanism of NK314 is to intercalate into DNA, trap and inhibit topoisomerase IIα, an action that leads to the generation of double-strand DNA breaks, which activate ATM and DNA-PK mediated DNA repair pathways and Chk1 mediated G2 checkpoint pathway. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CpG island methylation within single gene promoters can silence expression of associated genes. We first extended these studies to bidirectional gene pairs controlled by single promoters. We showed that hypermethylation of bidirectional promoter-associated CpG island silences gene pairs (WNT9A/CD558500, CTDSPL/BC040563, and KCNK15/BF 195580) simultaneously. Hypomethylation of these promoters by 5-aza-2'-deoxycytidine treatment reactivated or enhanced gene expression bidirectionally. These results were further confirmed by luciferase assays. Methylation of WNT9A/CD558500 and CTDSPL/BC040563 promoters occurs frequently in primary colon cancers and acute lymphoid leukemia, respectively. ^ Next we sought to understand the origins of hypermethylation in cancer. CpG islands associated with tumor suppressor genes are normally free from methylation, but can be hypermethylated in cancer. It remains poorly understood how these genes are protected from methylation in normal tissues. In our studies, we aimed to determine if cis-acting elements in these genes are responsible for this protection, using the tumor suppressor gene p16 as a model. We found that Alu repeats located both upstream and downstream of the p16 promoter become hypermethylated with age. In colon cancer samples, the methylation level is particularly high, and the promoter can also be affected. Therefore, the protection in the promoter against methylation spreading could fail during tumorigenesis. This methylation pattern in p16 was also observed in cell lines of different tissue origins, and their methylation levels were found to be inversely correlated with that of active histone modification markers (H3K4-3me and H3K9-Ac). To identify the mechanism of protection against methylation spreading, we constructed serial deletions of the p16 protected region and used silencing of a neomycin reporter gene to evaluate the protective effects of these fragments. A 126 bp element was identified within the region which exerts bidirectional protection against DNA methylation, independently of its transcriptional activity. The protective strength of this element is comparable to that of the HS4 insulator. During long-term culture, the presence of this element significantly slowed methylation spreading. In conclusion, we have found that an element located in the p16 promoter is responsible for protection against DNA methylation spreading in normal tissues. The failure of protective cis-elements may be a general feature of tumor-suppressor gene silencing during tumorigenesis. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genomic DNA of eukaryotic cells is well organized into chromatin structures. However, these repressed structures present barriers that block the access of regulatory factors to the genome during various nuclear events. To overcome the obstacle, two major cellular processes, post-modification of histone tails and ATP-dependent chromatin remodeling, are involved in reconfiguring chromatin structure and creating accessible DNA. Despite the current research progress, much remains to be explored concerning the relationship between chromatin remodeling and DNA repair. Recently, one member of the ATP-dependent chromatin remodeling complexes, INO80, has been found to play a crucial role in DNA damage repair. However, the functions of this complex in higher eukaryotes have yet to be determined. The goal of my study is to generate a human somatic INO80 conditional knockout model and investigate the functions of Ino80 in damage repair.^ By homologous targeting of the INO80 locus in human HCT116 colon epithelial cells, I established a human somatic INO80 conditional knockout model. I have demonstrated that the conditional INO80 cells exhibited a sufficiently viable period when the INO80 protein is removed. Moreover, I found that loss of INO80 resulted in deficient UV lesion repair in response to UV while the protein levels of the NER factors such as XPC, XPA, XPD were not affected. And in vitro repair synthesis assay showed that the NER incision and repair synthesis activities were intact in the absence of INO80. Examination on the damage recognition factor XPC showed its recruitment to damage sites was impaired in the INO80 mutant cells. Loss of INO80 also led to reduced enrichment of XPA at the site of UV lesions. Despite the reduced recruitment of XPC and XPA observed in INO80 mutants, no direct interaction was detected. Meanwhile, direct interaction between INO80 and DDB1, the initial UV lesion detector, was detected by coimmunoprecipitation. UV-induced chromosome relaxation was reduced in cells devoid of INO80. These results demonstrate the INO80 complex may participates in the NER by interacting with DDB1 and having a critical role of in creating DNA accessibility for the nucleotide excision pathway. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this dissertation, I identify two molecular mechanisms by which transcription factors cooperate with their co-regulators to mediate gene regulation. In the first part, I demonstrate that p53 directly recruits LSD1, a histone demethylase, to AFP chromatin to demethylate methylated H3K4 and actively mediate transcription repression. Loss of p53 and LSD1 interaction at chromatin leads to derepression of AFP in hepatic cells. In the second part, I reveal that Trim24 functions as an important co-activator in ERα-mediated gene activation in response to estrogen stimulation. Trim24 is recruited by ligand-bound ERα to chromatin and stabilizes ERα-chromatin interactions by binding to histone H3 via its PHD finger, which preferentially recognizes unmethylated H3K4. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The p53 transcription factor is a tumor suppressor and a master regulator of apoptosis and the cell cycle in response to cell stress. In some advanced tumors, such as prostate cancers, the loss of p53 correlates with an increase in the occurrence of metastases. In addition, several groups have suggested that p53 status correlates with changes in cell migration and cell morphology associated with a migratory phenotype. Others have identified several genes with roles in cell migration that are directly transcriptionally regulated by p53. Even so, modulation of cell migration is not widely recognized as a p53 stress response. ^ In an effort to identify novel p53 target genes and expand our knowledge of the p53 transcriptional response, we performed Affymetrix gene expression analysis in p53-null PC3 prostate cancer cells following infection with a control virus or adenoviral construct expressing wild-type p53. Over 300 genes that had not been previously recognized as p53 target genes were identified. Of these genes, 224 were upregulated and 111 were downregulated (p<0.05). Functional over-representation analysis identified cell migration as a significantly over-represented biological function of p53. Further analysis identified two genes that are critical for the control of cell migration as potential p53 targets. One, hyaluronan mediated motility receptor (HMMR), has recently been shown to be a p53 target important for regulation of the cell cycle. Here, we show that HMMR is downregulated by p53 in several cell lines, and HMMR's regulation is dependent on the presence of the cdk inhibitor, p21, and histone deactelyase activity. The other gene, carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), itself a tumor suppressor, is shown here, for the first time, as a p53 direct target by ChIP analysis. We next determined the effect of p53 activation on cell migration and found that p53 significantly slows the rate of cell migration in Boyden chamber migration assays and digital videomicroscopy wound healing studies. Further, our studies established the specific roles of CEACAM1 and HMMR in cell migration and determine that loss of CEACAM1 and overexpression of HMMR independently contribute to increased cell migration. Taken together, these studies provide a direct mechanistic link between p53 to the regulatory control of specific target genes that mediate cell adhesion and migration. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epigenetic silencing of tumor suppressor genes by DNA hypermethylation at promoter regions is a common event in carcinogenesis and tumor progression. Abrogation of methylation and reversal of epigenetic silencing is a very potent way in cancer treatment. However, the reactivation mechanisms are poorly understood. In this study, we first developed a cell line model system named YB5, derived from SW48 cancer cell line, which bears one copy of stably integrated EGFP gene on Chromosome 1p31.1 region. The GFP gene expression is transcriptionally silenced due to the hypermethylated promoter CMV. However, the GFP expression can be restored using demethylating agent 5-aza-2' deoxycytidine (DAC), and detected by FACS and fluorescent microscopy. Using this system, we observed the heterogeneous reactivation induced by DAC treatment. After flow sorting, GFP negative cells exhibited similar level of incomplete demethylation compared to GFP positive cells on repetitive LINE1 element, tumor suppressor genes such as P16, CDH13, and RASSF1a, and CMV promoter as well. However, the local chromatin of CMV-GFP locus altered to an open structure marked by high H3 lysine 9 acetylation and low H3 lysine 27 tri-methylation in GFP positive cells, while the GFP negative cells retained mostly the original repressive marks. Thus, we concluded that DAC induced DNA hypomethylation alone does not directly determine the level of re-expression, and the resetting of the local chromatin structure under hypomethylation environment is required for gene reactivation. Besides, a lentivirus vector-based shRNA screening was performed using the YB5 system. Although it is the rare chance that vector lands in the neighboring region of GFP, we found that the exogenous vector DNA inserted into the upstream region of GFP gene locus led to the promoter demethylation and reactivated the silenced GFP gene. Thus, epigenetic state can be affected by changing of the adjacent nucleic acid sequences. Further, this hypermethylation silenced system was utilized for epigenetic drug screening. We have found that DAC combined with carboplatin would enhance the GFP% yield and increase expression of other tumor suppressor genes than DAC alone, and this synergistic effect may be related to DNA repair process. In summary, these studies reveal that reversing of methylation silencing requires coordinated alterations of DNA methylation, chromatin structure, and local microenvironment. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite of much success of breast cancer treatment, basal-like breast cancer subtype still presented as a clinical challenge to mammary oncologist for its lack of available targeted therapy owing to their negative expression of targeted molecules, such as PgR, ERα and Her2. These molecules are all critical regulators in mammary gland development. EZH2, a histone methyltransferase, by forming Polycomb Repressive Complex 2(PRC2) can directly suppress a large array of developmental regulators. Overexpression of cyclin E has also been correlated with basal-like (triple-negative) breast cancer and poor prognosis. We found an important functional link between these two molecules. Cyclin E/Cdk2 can enhance PRC2 function by phosphorylating a specific residue of EZH2, threonine 416 and increasing EZH2's ability to complex with SUZ12. This regulation would further recruit whole PRC2 complex to core promoter regions of these developmental regulators. The local enrichment of PRC2 complex would then trimethylate H3K27 around the core promoter regions and suppress the expression of targeted genes, which included PgR, ERα, erbB2 and BRCA1. This widespread gene suppressive effect imposed by highly active PRC2 complex would then transform the lumina) type cell to adopt a basal-like phenotype. This finding suggested deregulated Cdk2 activity owing to cyclin E overexpression may contribute to basal phenotype through enhancing epigenetic silencing effects by regulating PRC2 function. Inhibition of Cdk2 activity in basal-like cancer cells may help release the suppression, reexpress the silenced genes and become responsive to existing anti-hormone or anti-Her2 therapy. From this study, the mechanisms described here provided a rationale to target basal-like breast cancer by new combinational therapy of Cdk2 inhibitors together with Lapatinib, or Aromatin. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromatin, composed of repeating nucleosome units, is the genetic polymer of life. To aid in DNA compaction and organized storage, the double helix wraps around a core complex of histone proteins to form the nucleosome, and is therefore no longer freely accessible to cellular proteins for the processes of transcription, replication and DNA repair. Over the course of evolution, DNA-based applications have developed routes to access DNA bound up in chromatin, and further, have actually utilized the chromatin structure to create another level of complexity and information storage. The histone molecules that DNA surrounds have free-floating tails that extend out of the nucleosome. These tails are post-translationally modified to create docking sites for the proteins involved in transcription, replication and repair, thus providing one prominent way that specific genomic sequences are accessed and manipulated. Adding another degree of information storage, histone tail-modifications paint the genome in precise manners to influence a state of transcriptional activity or repression, to generate euchromatin, containing gene-dense regions, or heterochromatin, containing repeat sequences and low-density gene regions. The work presented here is the study of histone tail modifications, how they are written and how they are read, divided into two projects. Both begin with protein microarray experiments where we discover the protein domains that can bind modified histone tails, and how multiple tail modifications can influence this binding. Project one then looks deeper into the enzymes that lay down the tail modifications. Specifically, we studied histone-tail arginine methylation by PRMT6. We found that methylation of a specific histone residue by PRMT6, arginine 2 of H3, can antagonize the binding of protein domains to the H3 tail and therefore affect transcription of genes regulated by the H3-tail binding proteins. Project two focuses on a protein we identified to bind modified histone tails, PHF20, and was an endeavor to discover the biological role of this protein. Thus, in total, we are looking at a complete process: (1) histone tail modification by an enzyme (here, PRMT6), (2) how this and other modifications are bound by conserved protein domains, and (3) by using PHF20 as an example, the functional outcome of binding through investigating the biological role of a chromatin reader. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mutagenicity study of the urinary metabolites of 2-aminonaphthalene was conducted to determine whether differences in metabolism between different acetylator phenotypes could account for a proposed mechanism of bladder carcinogenesis. This required the use of fast and slow acetylator rabbits with phenotypic similarities to humans. In the absence of available slow acetylators, it was necessary to inhibit fast acetylators. The proposed mechanism was that slow acetylators were at greater potential risk of bladder carcinogenesis due to low rates of acetylation, a detoxification mechanism for certain aromatic amines. The alternate metabolic pathway will be hydroxylation. The fast acetylators were proposed to exhibit lower risk of bladder carcinogenicity as a result of higher acetylation rates and less mutagenic metabolites.^ This hypothesis was approached by determining from in vitro mutagenicity assays with Salmonella typhimurium strains TA98 and TA100 whether different metabolites were mutagenic. The acetylation rate of each rabbit and a suitable method of acetylation inhibition were determined through oral exposure to dapsone and the acetylation inhibitor, K-p-aminosalicylic acid. Residues of dapsone and its acetylated metabolite were extracted from blood samples and analyzed by ultra-violet spectrometry using standard curves for each metabolite. The urine samples were concentrated on XAD-2 resin and analyzed both as whole urine concentrates and as isolated metabolites from spots on high performance thin layer chromatography plates. The major isolated spots were identified and quantified through extraction and analysis by high performance liquid chromatography when possible.^ Acetylation rate determination and inhibition were successfully demonstrated in rabbits. Significant mutagenicity was noted for several critical metabolites. None of the mutagenic metabolites were detected in higher concentration in the inhibited acetylators and thus, no clear relationship of metabolite concentration to bladder carcinogenesis was evident for the compounds analyzed. There was some evidence that the inhibitor may have affected critical enzyme systems other than acetylation alone. This would account for the lower concentrations of mutagenic hydroxylated compounds observed. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gastrointestinal Stromal Tumors (GIST) are sarcomas driven by gain-of-function mutations of KIT or PDGFRA. Although, the introduction of tyrosine kinase inhibitors has dramatically changed the history of this disease, evidences emerge that inhibition of KIT or PDGFRA are not sufficient to cure patients. The developmental pathway Notch has a critical role in the cell fate, regulating cell proliferation and differentiation. Dysregulation of Notch pathway has been implicated in a wide variety of cancers functioning as a tumor promoter or a tumor suppressor in a cell context dependent manner. Given that Notch activation deregulates the morphogenesis of mesenchymal cells in the GI track, that Notch acts as a tumor suppressor in neuroendocrine tumors, and finally that the cell of origin of GIST are the Interstitial Cell of Cajal that arise from a mesenchymal origin with some neuroendocrine features, we hypothesized that Notch pathway signaling may play a role in growth, survival and differentiation of GIST cells. To test this hypothesis, we genetically and pharmacologically manipulated the Notch pathway in human GIST cells. In this study, we demonstrated that constitutively active intracellular domain of Notch1 (ICN-1) expression potently induced growth arrest and downregulated KIT expression. We have performed a retrospective analysis of 15 primary GIST patients and found that high mRNA level of Hes1, a major target gene of Notch pathway, correlated with a significantly longer relapse-free survival. Therefore, we have established that treatment with the FDA approved histone deacetylase inhibitor SAHA (Vorinostat) caused dose-dependent upregulation of Notch1 expression and a parallel decrease in viability in these cells. Retroviral silencing of downstream targets of Notch with dominant negative Hes-1 as well as pharmacological inhibition of Notch pathway with a γ-secretase inhibitor partially rescued GIST cells from SAHA treatment. Taken together these results identify anti-tumor effect of Notch1 and a negative cross-talk between Notch1 and KIT pathways in GIST. Consequently, we propose that activation of this pathway with HDAC inhibitors may be a potential therapeutic strategy for GIST patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uridine-rich small nuclear RNAs (U snRNAs) play essential roles in eukaryotic gene expression by facilitating the removal of introns from mRNA precursors and the processing of the replication-dependent histone pre-mRNAs. Formation of the 3’ end of these snRNAs is carried out by a poorly characterized, twelve-membered protein complex named Integrator Complex. In the effort to understand Integrator Complex function in the formation of the snRNA 3’ end, we performed a functional RNAi screen in Drosophila S2 cells to identify protein factors required for snRNA 3’ end formation. This screen was conducted by using a fluorescence-based reporter that elicits GFP expression in response to a deficiency in snRNA processing. Besides scoring the known Integrator subunits, we identified Asunder and CG4785 as additional core members of the Integrator Complex. Additionally, we also found a conserved requirement for Cyclin C and Cdk8 in both fly and human snRNA 3’ end processing. We have further demonstrated that the kinase activity of Cdk8 is critical for snRNA 3’ end processing and is likely to function independent of its well-documented function within the Mediator Cdk8 module. Taken together, this work functionally defines the Drosophila Integrator Complex and demonstrates a novel function for Cyclin C/Cdk8 in snRNA 3’ end formation. This thesis work has also characterized an important functional interaction mediated by a microdomain within Integrator subunit 12 (IntS12) and IntS1 that is required for the activity of the Integrator Complex in processing the snRNA 3’ end. Through the development of a reporter-based functional RNAi-rescue assay in Drosophila S2 cells, we analyzed domains within IntS12 required for snRNA 3’ end formation. This analysis unexpectedly revealed that an N-terminal 30 amino acid region and not the highly conserved central PHD finger domain, is required for snRNA 3’ end cleavage. The IntS12 microdomain (1-45) functions autonomously, and is sufficient to interact and stabilize the putative scaffold protein IntS1. Our findings provide more details of the Integrator Complex for understanding the molecular mechanism of snRNA 3’ end processing. Moreover, these results lay the foundation for future studies of the complex through the identification of a novel functional domain within one subunit and the identification of additional subunits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms underlying cellular response to proteasome inhibitors have not been clearly elucidated in solid tumor models. Evidence suggests that the ability of a cell to manage the amount of proteotoxic stress following proteasome inhibition dictates survival. In this study using the FDA-approved proteasome inhibitor bortezomib (Velcade®) in solid tumor cells, we demonstrated that perhaps the most critical response to proteasome inhibition is repression of global protein synthesis by phosphorylation of the eukaryotic initiation factor 2-α subunit (eIF2α). In a panel of 10 distinct human pancreatic cancer cells, we showed marked heterogeneity in the ability of cancer cells to induce eIF2α phosphorylation upon stress (eIF2α-P); lack of inducible eIF2α-P led to excessive accumulation of aggregated proteins, reactive oxygen species, and ultimately cell death. In addition, we examined complementary cytoprotective mechanisms involving the activation of the heat shock response (HSR), and found that induction of heat shock protein 70 kDa (Hsp72) protected against proteasome inhibitor-induced cell death in human bladder cancer cells. Finally, investigation of a novel histone deacetylase 6 (HDAC6)-selective inhibitor suggested that the cytoprotective role of the cytoplasmic histone deacetylase 6 (HDAC6) in response to proteasome inhibition may have been previously overestimated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structure-function analysis of human Integrator subunit 4 Anupama Sataluri Advisor: Eric. J. Wagner, Ph.D. Uridine-rich small nuclear RNAs (U snRNA) are RNA Polymerase-II (RNAPII) transcripts that are ubiquitously expressed and are known to be essential for gene expression. snRNAs play a key role in mRNA splicing and in histone mRNA expression. Inaccurate snRNA biosynthesis can lead to diseases related to defective splicing and histone mRNA expression. Although the 3′ end formation mechanism and processing machinery of other RNAPII transcripts such as mRNA has been well studied, the mechanism of snRNA 3′ end processing has remained a mystery until the recent discovery of the machinery that mediates this process. In 2005, a complex of 14 subunits (the Integrator complex) associated with RNA Polymerase-II was discovered. The 14subunits were annotated Integrator 1-14 based on their size. The subunits of this complex together were found to facilitate 3′ end processing of snRNA. Identification of the Integrator complex propelled research in the direction of understanding the events of snRNA 3’end processing. Recent studies from our lab confirmed that Integrator subunit (IntS) 9 and 11 together perform the endonucleolytic cleavage of the nascent snRNA 3′ end to generate mature snRNA. However, the role of other members of the Integrator complex remains elusive. Current research in our lab is focused on deciphering the role of each subunit within the Integrator complex This work specifically focuses on elucidating the role of human Integrator subunit 4 (IntS4) and understanding how it facilitates the overall function of the complex. IntS4 has structural similarity with a protein called “Symplekin”, which is part of the mRNA 3’end processing machinery. Symplekin has been thoroughly researched in recent years and structure-function correlation studies in the context of mRNA 3’end processing have reported a scaffold function for Symplekin due to the presence of HEAT repeat motifs in its N-terminus. Based upon the structural similarity between IntS4 and Symplekin, we hypothesized that Integrator subunit 4 may be behaving as a Symplekin-like scaffold molecule that facilitates the interaction between other members of the Integrator Complex. To answer this question, the two important goals of this study were to: 1) identify the region of IntS4, which is important for snRNA 3′ end processing and 2) determine binding partners of IntS4 which promote its function as a scaffold. IntS4 structurally consists of a highly conserved N-terminus with 8 HEAT repeats, followed by a nonconserved C- terminus. A series of siRNA resistant N and C-terminus deletion constructs as well as specific point mutants within its N-terminal HEAT repeats were generated for human IntS4 and, utilizing a snRNA transcriptional readthrough GFP-reporter assay, we tested their ability to rescue misprocessing. This assay revealed a possible scaffold like property of IntS4. To probe IntS4 for interaction partners, we performed co-immunoprecipitation on nuclear extracts of IntS4 expressing stable cell lines and identified IntS3 and IntS5 among other Integrator subunits to be binding partners which facilitate the scaffold like function of hIntS4. These findings have established a critical role for IntS4 in snRNA 3′ end processing, identified that both its N and C termini are essential for its function, and mapped putative interaction domains with other Integrator subunits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Histone acetyltransferases are important chromatin modifiers that function as transcriptional co-activators. The identification of the transcriptional regulator GCN5 as the first nuclear histone acetyltransferase in yeast directly linked chromatin remodeling to transcriptional regulation. Although emerging evidence suggests that acetyltransferases participate in multiple cellular processes, their roles in mammalian development remain undefined. In this study, I have cloned and characterized the mouse homolog of GCN5 and a closely related protein P/CAF that interacts with p300/CBP. In contrast to yeast GCN5, but similar to P/CAF, mouse GCN5 possesses an additional N-terminal domain that confers the ability to acetylate nucleosomal histones. GCN5 and P/CAF exhibit identical substrate specificity and both interact with p300/CBP. Interestingly, expression levels of GCN5 and P/CAF display a complementary pattern in mouse embryos and in adult tissues, suggesting that they have distinct tissue or developmental stage specific roles. To define the in vivo function of GCN5 and P/CAF, I have generated mice that are nullizygous for GCN5 or P/CAF. P/CAF null mice are viable and fertile with no gross morphological defects, indicating that P/CAF is dispensable for development and p300/CBP function in vivo. In contrast, mice lacking GCN5 die between 10.5–11 days of gestation. GCN5 null mice are severely retarded but have anterior ectopic outgrowth. Molecular marker analyses reveal that early mesoderm is formed in GCN5 null mice but further differentiation into distinct mesodermal lineages is perturbed. While presomitic mesoderm and chodamesoderm are missing in GCN5 mutant mice, extraembryonic tissues and lateral mesoderm are unaffected. This is consistent with our finding that GCN5 expression is absent in the heart and extraembryonic tissues but is uniform throughout the rest of the embryo. Remarkably, GCN5 mutant mice exhibit an unusually high incidence of apoptosis in the embryonic ectoderm and mesoderm. Finally, mice doubly null for GCN5 and P/CAF die much earlier than mice harboring the GCN5 mutation alone, suggesting that P/CAF and GCN5 share some overlapping function during embryogenesis. This work is the first study to show that specific acetyltransferase is important for cell survival as well as mesoderm differentiation or maintenance during early mammalian development. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A benthic isotope record has been measured for core SO75-26KL from the upper Portuguese margin (1099 m water depth) to monitor the response of thermohaline overturn in the North Atlantic during Heinrich events. Evaluating benthic delta18O in TS diagrams in conjunction with equilibrium deltac fractionation implies that advection of Mediterranean outflow water (MOW) to the upper Portuguese margin was significantly reduced during the last glacial (< 15% compared to 30% today). The benthic isotope record along core SO75-26KL therefore primarily monitors variability of glacial North Atlantic conveyor circulation. The 14C-accelerator mass spectrometry ages of 13.54±.07 and 20.46±.12 ka for two ice-rafted detritus (IRD) layers in the upper core section and an interpolated age of 36.1 ka for a third IRD layer deeper in the core are in the range of published 14C ages for Heinrich events H1, H2, and H4. Marked depletion of benthic delta13C by 0.7-1.1 per mil during the Heinrich events suggests reduced thermohaline overturn in the North Atlantic during these events. Close similarity between meltwater patterns (inferred from planktonic delta18O) at Site 609 and ventilation patterns (inferred from benthic delta13C) in core SO75-26KL implies coupling between thermohaline overturn and surface forcing, as is also suggested by ocean circulation models. Benthic delta13C starts to decrease 1.5-2.5 kyr before Heinrich events Hl and H4, fully increased values are reached 1.5-3 kyr after the events, indicating a successive slowdown of thermohaline circulation well before the events and resumption of the conveyor's full strength well after the events. Benthic delta13C changes in the course of the Heinrich events show subtle maxima and minima suggesting oscillatory behavior of thermohaline circulation, a distinct feature of thermohaline instability in numerical models. Inferrred gradual spin-up of thermohaline circulation after Hl and H4 is in contrast to abrupt wanning in the North Atlantic region that is indicated by sudden increases in Greenland ice core delta18O and in marine faunal records from the northern North Atlantic. From this we infer that thermohaline circulation can explain only in part the rapid climatic oscillations seen in glacial sections of the Greenland ice core record.