968 resultados para hematopoietic stem cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stem cell transplantation therapy using mesenchymal stem cells (MSCs) is considered a useful strategy. Although MSCs are commonly isolated by exploiting their plastic adherence, several studies have suggested that there are other populations of stem and/or osteoprogenitor cells which are removed from primary culture during media replacement. Therefore, we developed a three-dimensional (3D) culture system in which adherent and non-adherent stem cells are selected and expanded. Here, we described the characterization of 3D culture-derived cell populations in vitro and the capacity of these cells to differentiate into bone and/or cartilage tissue when placed inside of demineralized bone matrix (DBM) cylinders, implanted subcutaneously into the backs of rat for 2, 4 and 8 weeks. Our results demonstrates that 3D culture cells were a heterogeneous population of uncommitted cells that express pluripotent, hematopoietic, mesenchymal and endothelial specific markers in vitro and can undergo osteogenic differentiation in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hes1, a major target gene in Notch signaling, regulates the fate and differentiation of various cell types in many developmental systems. To gain a novel insight into the role of Hes1 in corneal tissue, we performed gain-of-function and loss-of-function studies. We show that corneal development was severely disturbed in Hes1-null mice. Hes1-null corneas manifested abnormal junctional specialization, cell differentiation, and less cell proliferation ability. Worthy of note, Hes1 is expressed mainly in the corneal epithelial stem/progenitor cells and is not detected in the differentiated corneal epithelial cells. Expression of Hes1 is closely linked with corneal epithelial stem/progenitor cell proliferation activity in vivo. Moreover, forced Hes1 expression inhibits the differentiation of corneal epithelial stem/progenitor cells and maintains these cells' undifferentiated state. Our data provide the first evidence that Hes1 regulates corneal development and the homeostatic function of corneal epithelial stem/progenitor cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using quantitative fluorescence in situ hybridization and flow cytometry, the telomere length of telomere repeat sequences after stem cell transplantation (SCT) were measured. The study included the telomeres of peripheral blood monocytes that should reflect the length of telomeres in stem cells and the telomeres of T lymphocytes that could shorten as a result of peripheral expansion. The loss of telomeres in monocytes and in memory T cells, although accelerated initially, became comparable to the loss of telomeres in healthy controls from the second year after transplantation. In addition, the telomere length in the naive T cells that were produced by the thymus was comparable to the telomere length in the naive T cells of the donor. Compared to the total length of telomeres available, the loss of telomere repeats in leukocytes after SCT resembles the accelerated shortening seen in early childhood and remains, therefore, relatively insignificant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To modulate alloreactivity after hematopoietic stem cell transplantation, "suicide" gene-modified donor T cells (GMCs) have been administered with an allogeneic T-cell-depleted marrow graft. We previously demonstrated that such GMCs, generated after CD3 activation, retrovirus-mediated transduction, and G418 selection, had an impaired Epstein-Barr virus (EBV) reactivity, likely to result in an altered control of EBV-induced lymphoproliferative disease. To further characterize the antiviral potential of GMCs, we compared the frequencies of cytomegalovirus (CMV)-specific CD8+ T (CMV-T) cells and EBV-specific CD8+ T (EBV-T) cells within GMCs from CMV- and EBV-double seropositive donors. Unlike anti-EBV responses, the anti-CMV responses were not altered by GMC preparation. During the first days of culture, CMV-T cells exhibited a lower level of CD3-induced apoptosis than did EBV-T cells. In addition, the CMV-T cells escaping initial apoptosis subsequently underwent a higher expansion rate than EBV-T cells. The differential early sensitivity to apoptosis could be in relation to the "recent activation" phenotype of EBV-T cells as evidenced by a higher level of CD69 expression. Furthermore, EBV-T cells were found to have a CD45RA-CD27+CCR7- effector memory phenotype, whereas CMV-T cells had a CD45RA+CD27-CCR7- terminal effector phenotype. Such differences could be contributive, because bulk CD8+CD27- cells had a higher expansion than did bulk CD8+CD27+ cells. Overall, ex vivo T-cell culture differentially affects apoptosis, long-term proliferation, and overall survival of CMV-T and EBV-T cells. Such functional differences need to be taken into account when designing cell and/or gene therapy protocols involving ex vivo T-cell manipulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent evidence supports and reinforces the concept that environmental cues may reprogramme somatic cells and change their natural fate. In the present review, we concentrate on environmental reprogramming and fate potency of different epithelial cells. These include stratified epithelia, such as the epidermis, hair follicle, cornea and oesophagus, as well as the thymic epithelium, which stands alone among simple and stratified epithelia, and has been shown recently to contain stem cells. In addition, we briefly discuss the pancreas as an example of plasticity of intrinsic progenitors and even differentiated cells. Of relevance, examples of plasticity and fate change characterize pathologies such as oesophageal metaplasia, whose possible cell origin is still debated, but has important implications as a pre-neoplastic event. Although much work remains to be done in order to unravel the full potential and plasticity of epithelial cells, exploitation of this phenomenon has already entered the clinical arena, and might provide new avenues for future cell therapy of these tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last few years a vast amount of progress has been made in identifying mechanisms controlling lineage commitment and plasticity of hematopoietic precursors to different lymphoid or myeloid lineages. This has been due largely to the ability to identify and isolate rare cell populations in order to investigate their developmental potential, together with the development of inducible and/or tissue specific targeting technology. One family of proteins that has been postulated to be involved in hematopoietic stem cell maintenance as well as in multiple commitment processes during T cell development is the Notch receptors and their ligands. In this review we will summarize recent findings and controversies regarding the role of Notch signaling in the myeloid and lymphoid systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiospheres (CSs) are self-assembling multicellular clusters from the cellular outgrowth from cardiac explants cultured in nonadhesive substrates. They contain a core of primitive, proliferating cells, and an outer layer of mesenchymal/stromal cells and differentiating cells that express cardiomyocyte proteins and connexin 43. Because CSs contain both primitive cells and committed progenitors for the three major cell types present in the heart, that is, cardiomyocytes, endothelial cells, and smooth muscle cells, and because they are derived from percutaneous endomyocardial biopsies, they represent an attractive cell source for cardiac regeneration. In preclinical studies, CS-derived cells (CDCs) delivered to infarcted hearts resulted in improved cardiac function. CDCs have been tested safely in an initial phase-1 clinical trial in patients after myocardial infarction. Whether or not CDCs are superior to purified populations, for example, c-kit(+) cardiac stem cells, or to gene therapy approaches for cardiac regeneration remains to be evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although urothelial progenitor-like cells have been described in the human urinary tract, the existence of stem cells remains to be proven. Using a culture system that favors clonogenic epithelial cell growth, we evaluated and characterized clonal human urothelial cells. We isolated human urothelial cells that were clonogenic, capable of self-renewal and could develop into fully differentiated urothelium once re-implanted into the subcapsular space of nude mice. In addition to final urothelial cell differentiation, spontaneous formation of bladder-like microstructures was observed. By examining an epithelial stem cell signature marker, we found p63 to correlate with the self-renewal capacity of the isolated human urothelial clonal populations. Since a clinically relevant, long-term model for functional reconstitution of human cells does not exist, we sought to establish a culture method for porcine urothelial cells in a clinically relevant porcine model. We isolated cells from porcine ureter, urethra and bladder that were clonogenic and capable of self-renewal and differentiation into fully mature urothelium. In conclusion, we could isolate human and porcine cell populations, behaving as urothelial stem cells and showing clonogenicity, self-renewal and, once re-implanted, morphological differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Recently, mesenchymal stem cells (MSC) of perivascular origin have been identified in several organs not including the heart. Using a novel cell isolation protocol, we have isolated cells sharing common characteristics from mouse hearts and pancreas. The aim of the present study was to characterize these cells in vitro.Methods: Cells were isolated from neonatal and adult mouse hearts and pancreas and cultured for more than 6 months. Surface marker expression was analyzed by flow cytometry and immunocytochemistry. Cell differentiation was tested using multiple differentiation media. Insulin production by pancreas-derived cells was tested by dithizone staining.Results: Cells showing a similar, distinctive morphology were obtained from the heart and pancreas after 4-8 weeks of culture. Cells from the two organs also showed a very similar immunophenotype, characterized by expression of c-kit (stem cell factor receptor), CD44, the common leukocyte marker CD45, and the monocytic markers CD11b and CD14. A significant proportion of cardiac and pancreatic cells expressed NG2, a marker for pericytes and other vascular cells. A significant proportion of cardiac, but not of pancreatic cells expressed stem cell antigen-1 (Sca-1). However, cells did not express T, B or dendritic cell markers. Cells of both cardiac and pancreatic origin spontaneously formed "spheres" (spherical cell aggregates similar to "neurospheres" formed by neural stem cells) in vitro. Cardiosphere formation was enhanced by TNF-alpha. Several cardiospheres (but no "pancreatospheres") derived from neonatal (but not adult) cells showed spontaneous rhythmic contractions, thus demonstrating cardiac differentiation (this was confirmed by immunostaining for alpha-sarcomeric actinin). Beating activity was enhanced by low serum conditions. Cells from both organs formed adipocytes, osteocytes and osteocytes under appropriate conditions, the typical differentiation pattern of MSCs. Pancreas-derived cells also formed dithizonepositive insulin-producing cells.Conclusions: We have defined cardiac and pancreatic cell populations that share a common morphology, growth characteristics, and a unique immunophenotype. Expression of perivascular and monocytic markers, along with stem/priogenitor cell markers by these cells suggests a relationship with pericytes-mesoangioblasts and so-called multipotent monocytes. Cells show MSC-typical growth and differentiation patterns, together with tissue-specific differentiation potential: cardiomyocytes for cardiac-derived cells and insulinproducing cells for pancreas-derived cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adult mammalian forebrain contains neural stem/progenitor cells (NSCs) that generate neurons throughout life. As in other somatic stem cell systems, NSCs are proposed to be predominantly quiescent and proliferate only sporadically to produce more committed progeny. However, quiescence has recently been shown not to be an essential criterion for stem cells. It is not known whether NSCs show differences in molecular dependence based on their proliferation state. The subventricular zone (SVZ) of the adult mouse brain has a remarkable capacity for repair by activation of NSCs. The molecular interplay controlling adult NSCs during neurogenesis or regeneration is not clear but resolving these interactions is critical in order to understand brain homeostasis and repair. Using conditional genetics and fate mapping, we show that Notch signaling is essential for neurogenesis in the SVZ. By mosaic analysis, we uncovered a surprising difference in Notch dependence between active neurogenic and regenerative NSCs. While both active and regenerative NSCs depend upon canonical Notch signaling, Notch1-deletion results in a selective loss of active NSCs (aNSCs). In sharp contrast, quiescent NSCs (qNSCs) remain after Notch1 ablation until induced during regeneration or aging, whereupon they become Notch1-dependent and fail to fully reinstate neurogenesis. Our results suggest that Notch1 is a key component of the adult SVZ niche, promoting maintenance of aNSCs, and that this function is compensated in qNSCs. Therefore, we confirm the importance of Notch signaling for maintaining NSCs and neurogenesis in the adult SVZ and reveal that NSCs display a selective reliance on Notch1 that may be dictated by mitotic state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES: Donor cytomegalovirus seropositivity was reported to improve leukemia outcomes in HLA-A2 identical hematopoietic cell transplant (HCT) recipients, due to a possible cross-reactivity of donor HLA-A2-restricted CMV-specific T cells with minor histocompatibility (H) antigen of recipient cells. This study analyzed the role of donor CMV serostatus and HLA-A2 status on leukemia outcomes in a large population of HLA-identical HCT recipients. DESIGN AND METHODS: Leukemia patients transplanted between 1992 and 2003 at the Fred Hutchinson Cancer Research Center were categorized as standard risk [leukemia first remission, chronic myeloid leukemia in chronic phase (CML-CP)] and high risk (advanced disease) patients. Time-to-event analysis was used to evaluate the risk of relapse and death associated with HLA-A2 status and donor CMV serostatus. RESULTS: In standard risk patients, acute leukemia (p<0.001) and sex mismatch (female to male, p=0.004)) independently increased the risk of death, while acute leukemia increased the risk of relapse (p<0.001). In high risk patients acute leukemia (p=0.01), recipient age > or = 40 (p=0.005) and herpes simplex virus (HSV) seropositivity (p<0.001) significantly increased the risk death; HSV seropositivity (p=0.006) increased the risk of relapse. Donor CMV serostatus had no significant effect on mortality or relapse in any HLA group. INTERPRETATION AND CONCLUSION: This epidemiological study did not confirm the previously reported effect of donor CMV serostatus on the outcomes of leukemia in HLA-A2-identical HCT recipients. Addressing the question of cross-reactivity of HLA-A2-restricted CMV-specific T cells with minor H antigens in a clinical study would require knowledge of the patient's minor H antigen genotype. However, because of the unbalanced distribution of HLA-A2-restricted minor H antigens in the population and their incomplete identification, this question might be more appropriately evaluated in in vitro experiments than in a clinical study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In adult, bone remodeling is a permanent process, reaching an annual turnover of about 10% of the skeleton. Bone remodeling requires the sequential and coordinated actions of the hematopoietic origin osteoclasts, to remove bone and the mesenchymal origin osteoblasts to replace it. An increased level of bone resorption is the primary cause of age-related bone loss often resulting in osteopenia, and is the major cause of osteoporosis.¦Peroxisome proliferator-activated receptors (PPARs), which are expressed in three isotypes, PPARa, PPARp and PPARy, are ligand-activated transcription factors that control many cellular and metabolic processes, more particularly linked to lipid metabolism. In bone, previous works has shown that PPARy inhibits osteogenesis by favoring adipogenesis from common mesenchymal progenitors. In addition, the pro-osteoclastogenesis activity of PPARy results in an increased bone resorption. Accordingly, treatment with PPARy agonist such as the anti-diabetic drug TZD causes bone loss and accumulation of marrow adiposity in mice as well as in postmenopausal women. The aim of the present thesis work was to elucidate the PPARs functions in bone physiology.¦The initial characterization of the PPARP" bone phenotype mainly revealed a decreased BMD. In vitro studies exploring the potency of mesenchymal stem cells to differentiate in osteoblast showed no differences depending on the genotype. However, we could demonstrate an effect of PPARp in partially inhibiting osteoclastogenesis. These results are further sustained by a study made in collaboration with the group of Dr Kronke, which showed an impressive protection against ovariectomy-generated bone loss when the females are treated with a PPARp agonist.¦Observations in PPARy null mice are more complex. The lab has recently been able to generate mice carrying a total deletion of PPARy. Intriguingly, the exploration of the bone phenotype of these mice revealed paradoxical findings. Whereas short bones such as vertebrae exhibit an elevated BMD as expected, long bones (tibia and femur) are clearly osteoporotic. According to their activity when set in culture, osteoblast differentiation normally occurs. Indeed the phenotype can be mainly attributed to a high density of osteoclasts in the cortical bone of PPARy null mice, associated to large bone resorption areas.¦Our explorations suggest a mechanism that involves regulatory processes linking osteoclastogenesis to adipogenesis, the latter being totally absent in PPARy null mice. Indeed, the lack of adipose tissue creates a favorable niche for osteoclastogenesis since conditioned medium made from differentiated adipocyte 3T3L1 inhibited osteoclastogenesis from both PPARy-/- and WT cells. Thus, adipokines deficiency in PPARy-/- mice contributes to de- repress osteoclastogenesis. Using specific blocking antibody, we further identified adiponectin as the major player among dozens of adipokines. Using flow cytometry assay, we explored the levels at which the osteoclastic commitment was perturbed in the bone marrow of PPARy-/- mice. Intriguingly, we observe a general decrease for hematopoietic stem cell and lineage progenitors but increased proportion of osteoclast progenitor in PPARy-/- bone marrow. The general decrease of HSC in the bone marrow is however largely compensated by an important extra-medullary hematopoeisis, taking place in the liver and in the spleen.¦These specific characteristics emphasize the key role of PPARy on a cross road of osteogenesis, adipogenesis and hematopoiesis/osteoclastogenesis. They underline the complexity of the bone marrow niche, and demonstrate the inter-dependance of different cell types in defining bone homeostasis, that may be overseen when experimental design single out pure cell populations.¦Chez l'adulte, même après la fin de la croissance, le renouvellement des os se poursuit et porte sur environ 10% de l'ensemble du squelette adulte, par année. Ce renouvellement implique à la fois des mécanismes séquentiels et coordonnés des ostéoclastes d'origine hématopoïetique, qui dégradent l'os, et des ostéoblastes d'origine mésenchymale, qui permettent la régénération de l'os. La perte en densité osseuse due à l'âge entraîne un fort niveau de résorption, conduisant souvent à une ostéopénie, elle-même cause de l'ostéoporose.¦Les trois isotypes PPAR (Peroxisome proliferator-activated receptor, PPARa, PPARp, et PPARy) sont des récepteurs nucléaires qui contrôlent de nombreux mécanismes cellulaires et métaboliques, plus particulièrement liés au métabolisme lipidique. Au niveau osseux, des travaux précédents ont montré que PPARy inhibe l'ostéoblastogenèse en favorisant la formation d'adipocytes à partir de la cellule progénitrice commune. De plus, l'activité pro- ostéoclastogénique de PPARy induit une résorption osseuse accrue. Condormément à ces observations, les patients diabétiques traités par les thiazolidinediones qui agissent sur PPARy, ont un risque accrue d'ostéoporose liée à une perte osseuse accrue et un accroissement de l'adiposité au niveau de la moelle osseuse. Dans ce contexte, l'objectif de mon travail de thèse a été d'élucider le rôle des PPAR dans la physiologie osseuse, en s'appuyant sur le phénotype des souris porteuses de mutation pour PPAR.¦La caractérisation initiale des os des souris porteuses d'une délétion de ΡΡΑΕφ a principalement révélé une diminution de la densité minérale osseuse (DMO). Alors que l'ostéogenèse n'est pas significativement altérée chez ces souris, l'ostéoclastogenèse est elle augmentée, suggérant un rôle modérateur de ce processus par ΡΡΑΕΙβ. Ces résultats sont par ailleurs soutenus par une étude menée par le groupe du Dr Krônke en collaboration avec notre groupe, et qui monte une protection très importante des souris traitées par un activateur de PPARP contre l'ostéoporose provoquée par l'ovariectomie.¦Les observations concernant PPARy donnent des résultats plus complexes. Le laboratoire a en effet été capable récemment de générer des souris portant une délétion totale de PPARy. Alors que les os courts chez ces souris présentent une augmentation de la DMO, comme attendu, les os longs sont clairement ostéoporotiques. Ce phénotype corrèle avec une densité élevée d'ostéoclastes dans l'os cortical de ces os longs. Deux processus semblent contribuer à ce phénotype. En premier lieu, nous démontrons qu'un milieu conditionné provenant de cultures de cellules 3T3-L1 différenciées en adipocytes contiennent une forte activité inhibitrice d'osteoclastogenesis. L'utilisation d'anticorps neutralisant permet d'identifier l'adiponectine comme l'un des facteurs principaux de cette inhibition. Les souris PPARy étant totalement dépourvues d'adipocytes et donc de tissu adipeux, la sécrétion locale d'adiponectine dans la moelle osseuse est donc également absente, entraînant une désinhibition de l'ostéoclastogenèse. En second lieu, des analyses par FACS révèle une proportion accrue des cellules progénitrices d'ostéoclastes dans la moelle osseuse. Cela s'accompagne par une diminution globale des cellules souches hématopoïétiques, qui est cependant largement compensée par une importante hématopoëise extra-médullaire, dans le foie comme dans la rate.¦L'ensemble de notre travail montre toute l'importance de PPARy au carrefour de l'ostéogenèse, adipogenèse, et hématopoëise/osteoclastogenèse. Il souligne la complexité de la niche que représente la moelle osseuse et démontre l'inter-dépendance des différents types cellulaires définissant l'homéostasie osseuse, complexité qui peut facilement être masqué lorsque le travail expérimental se concentre sur le comportement d'un type cellulaire donné.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although cardiac stem cells have been isolated based on stem cell surface markers, no single marker is stem cell-specific. Clonogenicity is a defining functional property of stemness. We therefore analyzed cardiac cell clones derived from human hearts.Methods: Clonogenic cells were derived from adult human atrial samples. Cells were either cultured in the absence of an initial marker selection or, in separate experiments, they were initially selected for c-kit (CD117), CD31 or CD164 by magnetic immunobeads, or for high aldehyde dehydrogenase activity (ALDH) by FACS. High ALDH activity has been linked to stem/progenitor cells in several tissues. Surface marker analysis was performed by flow cytometry. Cultured cells were also exposed to different factors that modulate cell differentiation, including Dikkopf-1, Noggin, and Wnt-5.Results: Clonogenic cells mainly showed fibroblast-like morphology, ability to grow for more than 30 passages in vitro, and a heterogeneous marker profile even in clones derived from the same cardiac sample. The predominant phenotype was positive for CD13, CD29, CD31, CD44, CD54, CD105 and CD146, but negative for CD10, CD11b, CD14, CD15, CD34, CD38, CD45, CD56, CD106, CD117, CD123, CD133, CD135 and CD271, primarily consistent with endothelial/vascular progenitor cells. However, a minority of clones showed a different profile characterized by expression of CD90, CD106 and CD318, but not CD31 and CD146, consistent with mesenchymal stem/progenitor cells. When initial cell selection was performed, both phenotypes were observed, similarly to unselected cells, irrespective of the selection marker used. Of note, CD117+ sorted cell clones were CD117-negative in culture. Regardless of the immunophenotype, several clones were able to form spheric cell aggregates (cardiospheres), a distinct stem cell property. Dikkopf-1 induced marked CD15 and CD106 upregulation, consistent with stromal differentiation; this effect was prevented by Noggin.Conclusions: The adult human heart contains clonogenic stem/progenitor cells that can be expanded for many passages and form cardiospheres. The surface marker profile of these cells is heterogeneous, consistent with a majority of clones being comprised of endothelial or vascular progenitor cells and a minority of clones consisting of mesenchymal stem/progenitor cells. Dikkopf-1 and Noggin showed opposing effects on stromal differentiation of human cardiac cell clones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To characterize the clinical, morphological and immunohistological features of epithelial ingrowth cells after laser in situ keratomileusis (LASIK) or Automated Lamellar Therapeutic Keratoplasty (ALTK) with specific reference to current markers of corneal stem cells.Methods: Four patients were included in this interventional non-comparative case series. Full ophthalmologic examination was performed. Epithelial ingrowth specimens from 4 patients were removed surgically and immunostained for cytokeratin 3 (CK3), cytokeratin 15 (CK15), cytokeratin 19 (CK19), Muc5AC, p63α, C/EBPδ, Bmi-1, BCRP/ABCG2 and Ki-67.Results: The time interval between LASIK/ALTK and ingrowth surgical removal was, 3, 11, 15 and 36 months. On slit lamp examination, early epithelial ingrowth appeared as whitish pearls and late epithelial ingrowth as confluent whitish opacities. Microscopically, the epithelial ingrowths showed features of a squamous non keratinizing epithelium. No mitotic figure was seen. Ki-67 labelling of 3 cases showed a proliferation index of 3-4%. Superficial squamous cells strongly expressed CK3. Expression of C/EBPδ, BCRP/ABCG2 and p63α was seen in more than 70% of cells and Bmi-1 was positive in up to 30% of cells in the specimens tested. There was no expression of CK19 or CK15.Conclusions: Epithelial ingrowths can persist for up to 3 years following LASIK surgery. They show a capacity for self-renewal and corneal differentiation. Besides, they express p63α, C/EBPδ, Bmi-1, BCRP/ABCG2 which have been proposed as markers of stem cell phenotype. These observations suggest that post-LASIK/ALTK epithelial inclusions could derive from stem-like cells located in the peripheral corneal epithelium.