915 resultados para hanging mercury drop
Resumo:
Breast milk is regarded as an ideal source of nutrients for the growth and development of neonates, but it can also be a potential source of pollutants. Mothers can be exposed to different contaminants as a result of their lifestyle and environmental pollution. Mercury (Hg) and arsenic (As) could adversely affect the development of fetal and neonatal nervous system. Some fish and shellfish are rich in selenium (Se), an essential trace element that forms part of several enzymes related to the detoxification process, including glutathione S-transferase (GST). The goal of this study was to determine the interaction between Hg, As and Se and analyze its effect on the activity of GST in breast milk. Milk samples were collected from women between day 7 and 10 postpartum. The GST activity was determined spectrophotometrically; total Hg, As and Se concentrations were measured by atomic absorption spectrometry. To explain the possible association of Hg, As and Se concentrations with GST activity in breast milk, generalized linear models were constructed. The model explained 44% of the GST activity measured in breast milk. The GLM suggests that GST activity was positively correlated with Hg, As and Se concentrations. The activity of the enzyme was also explained by the frequency of consumption of marine fish and shellfish in the diet of the breastfeeding women.
Resumo:
Photograph
Resumo:
This work evaluates the mercury (Hg) contamination status (sediments and biota) of the Bijagós archipelago, off the coast of Guinea-Bissau. Sediments exhibited very low concentrations (<1-12ngg(-1)), pointing to negligible sources of anthropogenic Hg in the region. Nevertheless, Hg is well correlated to the fine fraction, aluminium, and loss on ignition, indicating the effect of grain size and organic matter content on the presence of Hg in sediments. Mercury in the bivalves Tagelus adansoni and Senilia senilis did not vary considerably among sites, ranging within narrow intervals (0.09-0.12 and 0.12-0.14μgg(-1) (dry weight), respectively). Divergent substrate preferences/feeding tactics may justify slight differences between species. The value 11ngg(-1) is proposed as the sediment background concentration for this West-African coastal region, and concentrations within the interval 8-10ngg(-1) (wet weight) may be considered as reference range for S. senilis and T. adansoni in future monitoring studies.
Resumo:
Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010–2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.
Resumo:
Drag & Drop es una aplicación web diseñada para la creación de problemas a partir de piezas, en la que al profesor se le plantea una nueva posibilidad de evaluar a sus alumnos. La aplicación web servirá como un entorno dedicado a la elaboración de preguntas y respuestas. Para responder a dichas preguntas, se proporcionan unos elementos llamados “piezas” al alumno que se encargará de utilizar para construir su respuesta. A su vez, el profesor al elaborar la pregunta establecerá la solución ideal del problema y el conjunto de “piezas” que los alumnos podrán utilizar para crear las suyas propias. El alumno al terminar la solución de un problema, la enviará al servidor. Este se encargará de evaluarla y comparar la solución del alumno con la solución ideal propuesta por el profesor. Finalmente el profesor será el encargado de examinar el ejercicio y ajustar la calificación, ya sea aceptando la que propone el sistema o indicando una propia.
Resumo:
The garimpo gold mining activity has released about 2.500 tons of mercury in the Brazilian Amazonian environment in the 1980-1995 period. The northern region of Mato Grosso State, an important gold mining and trading area during the Arnazonian gold rush is now at a turning point regarding its economic future. Nowadays, the activities related to gold mining have only a low relevance on its economy. Thus, the local communities are looking for economic alternatives for the development of the region. Cooperative fish farming is one of such alternatives. However, some projects are directly implemented on areas degraded by the former garimpo activity and the mercury left behind still poses risks, especially by its potential accumulation in fish. The objective of the present study was to evaluate the levels of mercury contamination in two fish farming areas, Paranaita and Alta Floresta, with and without records of past gold-washing activity, respectively. Data such as mercury concentration in fish of different trophic level, size, and weight as well as the water physical and chemical parameters were measured and considered. These preliminary data have shown no significant difference between these two fish fanning areas, relatively to mercury levels in fish. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Aquatic organisms are considered excellent biomarkers of mercury (Hg) occurrence in the environment. Selenium (Se) acts in antagonism to this metal, stimulating its elimination, and reducing its toxicity. In this paper, tilapia (Oreochromis niloticus) were chronically acclimated in sub-lethal Hg2+, Hg2+ + Se4+ and Hg2+ + Se6+ concentrations. Distribution and bioaccumulation of both elements were evaluated in fish tissues. The kidney was the main target of the Hg and Se uptake, and the presence of Hg induced the Se hepatic elimination. The Hg bioaccumulation in the gill, spleen and heart were higher in the presence of Se6+ than in the presence of Se4+.
Resumo:
The project goal was to determine plant operations and maintenance worker’s level of exposure to mercury during routine and non-routine (i.e. turnarounds and inspections) maintenance events in eight gas processing plants. The project team prepared sampling and analysis plans designed to each plant’s process design and scheduled maintenance events. Occupational exposure sampling and monitoring efforts were focused on the measurement of mercury vapor concentration in worker breathing zone air during specific maintenance events including: pipe scrapping, process filter replacement, and process vessel inspection. Similar exposure groups were identified and worker breathing zone and ambient air samples were collected and analyzed for total mercury. Occupational exposure measurement techniques included portable field monitoring instruments, standard passive and active monitoring methods and an emerging passive absorption technology. Process sampling campaigns were focused on inlet gas streams, mercury removal unit outlets, treated gas, acid gas and sales gas. The results were used to identify process areas with increased potential for mercury exposure during maintenance events. Sampling methods used for the determination of total mercury in gas phase streams were based on the USEPA Methods 30B and EPA 1631 and EPA 1669. The results of four six-week long sampling campaigns have been evaluated and some conclusions and recommendations have been made. The author’s role in this project included the direction of all field phases of the project and the development and implementation of the sampling strategy. Additionally, the author participated in the development and implementation of the Quality Assurance Project Plan, Data Quality Objectives, and Similar Exposure Groups identification. All field generated data was reviewed by the author along with laboratory reports in order to generate conclusions and recommendations.
Resumo:
Silver and mercury are both dissolved in cyanide leaching and the mercury co-precipitates with silver during metal recovery. Mercury must then be removed from the silver/mercury amalgam by vaporizing the mercury in a retort, leading to environmental and health hazards. The need for retorting silver can be greatly reduced if mercury is selectively removed from leaching solutions. Theoretical calculations were carried out based on the thermodynamics of the Ag/Hg/CN- system in order to determine possible approaches to either preventing mercury dissolution, or selectively precipitating it without silver loss. Preliminary experiments were then carried out based on these calculations to determine if the reaction would be spontaneous with reasonably fast kinetics. In an attempt to stop mercury from dissolving and leaching the heap leach, the first set of experiments were to determine if selenium and mercury would form a mercury selenide under leaching conditions, lowering the amount of mercury in solution while forming a stable compound. From the results of the synthetic ore experiments with selenium, it was determined that another effect was already suppressing mercury dissolution and the effect of the selenium could not be well analyzed on the small amount of change. The effect dominating the reactions led to the second set of experiments in using silver sulfide as a selective precipitant of mercury. The next experiments were to determine if adding solutions containing mercury cyanide to un-leached silver sulfide would facilitate a precipitation reaction, putting silver in solution and precipitating mercury as mercury sulfide. Counter current flow experiments using the high selenium ore showed a 99.8% removal of mercury from solution. As compared to leaching with only cyanide, about 60% of the silver was removed per pass for the high selenium ore, and around 90% for the high mercury ore. Since silver sulfide is rather expensive to use solely as a mercury precipitant, another compound was sought which could selectively precipitate mercury and leave silver in solution. In looking for a more inexpensive selective precipitant, zinc sulfide was tested. The third set of experiments did show that zinc sulfide (as sphalerite) could be used to selectively precipitate mercury while leaving silver cyanide in solution. Parameters such as particle size, reduction potential, and amount of oxidation of the sphalerite were tested. Batch experiments worked well, showing 99.8% mercury removal with only ≈1% silver loss (starting with 930 ppb mercury, 300 ppb silver) at one hour. A continual flow process would work better for industrial applications, which was demonstrated with the filter funnel set up. Funnels with filter paper and sphalerite tested showed good mercury removal (from 31 ppb mercury and 333 ppb silver with a 87% mercury removal and 7% silver loss through one funnel). A counter current flow set up showed 100% mercury removal and under 0.1% silver loss starting with 704 ppb silver and 922 ppb mercury. The resulting sphalerite coated with mercury sulfide was also shown to be stable (not releasing mercury) under leaching tests. Use of sphalerite could be easily implemented through such means as sphalerite impregnated filter paper placed in currently existing processes. In summary, this work focuses on preventing mercury from following silver through the leaching circuit. Currently the only possible means of removing mercury is by retort, creating possible health hazards in the distillation process and in transportation and storage of the final mercury waste product. Preventing mercury from following silver in the earlier stages of the leaching process will greatly reduce the risk of mercury spills, human exposure to mercury, and possible environmental disasters. This will save mining companies millions of dollars from mercury handling and storage, projects to clean up spilled mercury, and will result in better health for those living near and working in the mines.
Resumo:
The focus of this research is to determine if a relationship exists between the stability constant and the initial uptake rate of a mercury species by bacteria. Cultures of the sulfate-reducing bacteria (SRB) strain Desulfovibrio desulfuricans G20 were washed with a bicarbonate buffer solution containing either lactate and sulfate or pyruvate and fumarate. The washed cell solutions were then spiked with either mercury bound to natural organic matter (Hg-NOM) or neutral mercury chloride (HgCl2), followed by sampling over time to provide kinetic data. Despite the significantly different stability constants for Hg-NOM and HgCl2, the calculated initial rate constants for mercury uptake for these two types of complexes appeared to be comparable. Uptake of mercury sulfide species was inconclusive due to possible formation of cinnabar. A simple model that is based on assumptions of passive diffusion and facilitated uptake of mercury by bacteria was evaluated for its potential to simulate the uptake. The model results only agreed with experimental data for HgCl2 uptake.
Resumo:
This research is part of continued efforts to correlate the hydrology of East Fork Poplar Creek (EFPC) and Bear Creek (BC) with the long term distribution of mercury within the overland, subsurface, and river sub-domains. The main objective of this study was to add a sedimentation module (ECO Lab) capable of simulating the reactive transport mercury exchange mechanisms within sediments and porewater throughout the watershed. The enhanced model was then applied to a Total Maximum Daily Load (TMDL) mercury analysis for EFPC. That application used historical precipitation, groundwater levels, river discharges, and mercury concentrations data that were retrieved from government databases and input to the model. The model was executed to reduce computational time, predict flow discharges, total mercury concentration, flow duration and mercury mass rate curves at key monitoring stations under various hydrological and environmental conditions and scenarios. The computational results provided insight on the relationship between discharges and mercury mass rate curves at various stations throughout EFPC, which is important to best understand and support the management mercury contamination and remediation efforts within EFPC.
Resumo:
We demonstrate cascaded 100-Gb/s sub-channel add/drop from a 1-Tb/s multi-band OFDM super-channel having 2-GHz inter-sub-channel guard-bands within a recirculating loop via a hierarchical ROADM using high-resolution filters, showcasing 1000-km transmission reach and five ROADM node passages for the add/drop sub-channel when hybrid Raman-EDFA is implemented.
Resumo:
Given their central role in mercury (Hg) excretion and suitability as reservoirs, bird feathers are useful Hg biomonitors. Nevertheless, the interpretation of Hg concentrations is still questioned as a result of a poor knowledge of feather physiology and mechanisms affecting Hg deposition. Given the constraints of feather availability to ecotoxicological studies, we tested the effect of intraindividual differences in Hg concentrations according to feather type (body vs. flight feathers), position in the wing and size (mass and length) in order to understand how these factors could affect Hg estimates. We measured Hg concentration of 154 feathers from 28 un-moulted barn owls (Tyto alba), collected dead on roadsides. Median Hg concentration was 0.45 (0.076–4.5) mg kg-1 in body feathers, 0.44 (0.040–4.9) mg kg-1 in primary and 0.60 (0.042–4.7) mg kg-1 in secondary feathers, and we found a poor effect of feather type on intra-individual Hg levels. We also found a negative effect of wing feather mass on Hg concentration but not of feather length and of its position in the wing. We hypothesize that differences in feather growth rate may be the main driver of between-feather differences in Hg concentrations, which can have implications in the interpretation of Hg concentrations in feathers. Finally, we recommend that, whenever possible, several feathers from the same individual should be analysed. The five innermost primaries have lowest mean deviations to both betweenfeather and intra-individual mean Hg concentration and thus should be selected under restrictive sampling scenarios.