985 resultados para halo nuclei
Resumo:
This paper reports the mega-, micro-sporogenesis and female-, male-gametogenesis of Swertia cincta for the first time, with the aim of discussing the systematic position of section Platynema and section Ophelia of Swertia. Anthers are tetrasporangiate. The development of anther walls conforms to the dicotyledonous type. The tapetum cells have dual origin and are similar to the glandular type. There are two middle layers. The endothecium and epidermis persist. Cytokinesis in the microsporrocyte meiosis is simultaneous type and the microscpore teads are tetrahedral. Pollen grains are 3-celled. The ovary is bicarpellum and unilocular. The placentation is of suparietal placentation with 12 series of ovules. The ovules. The ovule is unitegmic, tenuinucellar and ana-campylotropous, The embryo sac orignates from the single-archesporial cell. The one chalazal megaspore in lienar tetrad become the functional megasore. The development of embryo sac is of the polygonum type. Before fertilization, two polar nuclei fuse into one secondary nucleus. Three antipodal cells persisted and divided into 5-8 cells. A comparison between two sections indicates that section Plathnema is better treated as distinct section and is more advanced than section Ophelia according to the evolutionary trends of embryological characters.
Karyomorphology of Biebersteinia Stephan (Geraniaceae) and its systematic and taxonomic significance
Resumo:
The systematic and taxonomic position of Biebersteinia Stephan has long been in dispute. The present paper describes for the first time the karyomorphology of two species in Biebersteinia Stephan. Both species commonly showed the interphase nuclei of the simple chromocenter type and the mitotic prophase chromosomes of the interstitial type. The karyotype formulae of both B. heterostemon and B. odora were 2n=10=2m(2sec)+8sm(2sec), belonging to the 3A type of Stebbins' classification. The karyotype of this genus is recorded for the first time. The basic chromosome numbers of four of the five known species of Biebersteinia have been recorded as x=5. The combination of resting nuclei of the simple chromocenter type, mitotic prophase chromosomes of the interstitial type, two pairs of chromosomes with four obvious secondary constrictions at the mitotic prophase and metaphase stages, and the peculiar 3A karyotype in Biebersteinia can be regarded as the karymorphological marker of this genus. The karyomorphological data presented here do not support the traditional grouping of this genus in Geraniaceae. The unique karyomorphology of Biebersteinia justifies its familiar or ordinal status, which is congruent with embryological, anatomical, chemical and molecular data. The systematic position of Biebersteinia needs further study.
Resumo:
The embryological characters of Crawfurdia delavayi Frabnch. are described and the systematic relationships of Crawfurdia discussed. Anthers are tetrasporangiate. The development of anther walls conforms to the Dicotyledonous type. The tapetum is of single origin. The development of the tapetum with uninucleate cells is of the glandular type. The tapetal cells on the connective side show radial elongation or periclinal division and intrude into the anther locule. The epidermis of anther walls persists and its cells become pillar and fibrous, and the endothecium degenerates. The ovary is bicarpellary and unilocular. The placentation is typically parietal with 8 rows of anatropous ovules. The development of embryo sac is of the polygonum type. Before fertilization, two polar nuclei fuse into a secondary nucleus. Three antipodal cells persist. Flowers are protandrous. Fertilization is porogamous. The development of the endosperm is of the nuclear type. The embryogeny corresponds to the solanad type physalis II variation. The embryological data indicate that it is better to separate Crawfurdia from Gentiana as an independent genus.
Resumo:
With the progress of prospecting, the need for the discovery of blind ore deposits become more and more urgent. To study and find out the method and technology for the discovery of blind and buried ores is now a priority task. New geochemical methods are key technology to discover blind ores. Information of mobile components related to blind ores were extracted using this new methods. These methods were tested and applied based on element' s mobile components migrating and enriched in geophysical-geochemical process. Several kinds of partial extraction techniques have tested based on element' s occurrence in hypergenic zone. Middle-large scale geochemical methods for exploration in forest and swamp have been tested. A serious of methods were tested and applied effetely about evaluation of regional geochemical anomaly, 1:25000 bedrock or soil geochemical methods sampling based on the net in dendritic water system instead of the normal net. 1. Element related with ores can be mobiled to migrate upwards and be absorpted by surface soil. These abnomal components can be concentrated by natural or artificial methods. These trace metalic ions partially exist in dissovlvable ion forms of active state, and partially have been absorbed by Fe-Mn oxide, soil and organic matter in the soil so that a series of reaction such as complex reaction have take place. Employing various partial extraction techniques, metallic ions related with the phase of the blind ores can be extracted, such as the technique of organic complex extraction, Fe-Mn oxide extraction and the extraction technique of metallic ions of various absorption phases. 2.1:200000 regional geochemical evaluation anomaly methods: Advantageous ore-forming areas were selected firstly. Center, concentration, morphological feature, belt of anomaly were choosed then. Geological and geochemical anomalies were combined. And geological and geochemical background information were restrained. Xilekuduke area in Fuyun sheet , Zhaheba area in Qiakuerte sheet, the west-north part in Ertai sheet and Hongshanzui anomaly in Daqiao sheet were selected as target areas, in Alertai, in the north of Xinjiang. in Xilekuduke area, 1:25000 soil geochemical methods sampling based on the net in dendritic water system was carried out. Cu anomaly and copper mineralization were determined in the center area. Au , Cu anomalies and high polarization anomaly were determined in the south part. Prospecting by primary halo and organic complex extraction were used to prognosis blind ore in widely rang outcrop of bedrock. 1:25000 bedrock or soil geochemical methods sampling based on the net in dendritic water system were used in transported overburden outside of mining area. Shallow seismic method and primary halo found a new blind orebody in mining area. A mineralization site was fou and outside of Puziwan gold mine, in the north of Shanxi province. Developing middle-large scale geochemical exploration method is a key technique based 1:200000 regional geochemical exploration. Some conditions were tested as Sampling density , distribution sites of sample, grain size of sample and occurrence of element for exploration. 1:50000 exploration method was advanced to sample clast sediment supplement clast sediment in valley. 1:25000 bedrock or soil geochemical methods sampling based on the net in dendritic water system was applied to sample residual material in A or C horizon. 1:2000 primary or soil halo methods used to check anomalies and determine mineralization. Daliang gold mineralization in the northern Moerdaoga was found appling these methods. Thermomagnetic method was tested in miniqi copper-polymetallic ore. Process methods such as grain size of sample, heated temperature, magnetic separating technique were tested. A suite of Thermomagnetic geochemical method was formed. This method was applied in Xiangshan Cu~Ni deposit which is cover by clast or Gobi in the eastern Xinjiang. Element's content and contrast of anomaly with Thermomagnetic geochemical method were higher than soil anomaly. Susceptibility after samples were heated could be as a assessment conference for anomaly. In some sectors thermo-magnetic Cu, Ni, Ti anomalious were found outside deposits area. There were strong anomal ies response up ore tested by several kind of partial extraction methods include Thermomagnetic, enzyme leach and other partial extractions in Kalatongke Cu-Ni deposit in hungriness area in the northern of Xinjiang. Element's anomalies of meobile were mainly in Fe-Mn oxide and salt. A Copper mineralization site in Xilekuduke anomaly area had been determined. A blind ore was foung by shallow seismic and geochemical method and a mineralization site was found outside this mining area in Puziwan gold deposit in shanxi province. A Gold mineralization site was found by 1:50000 geochemical exploration in Daliang, Inner Mongolia.
Resumo:
The variation of surface compositions on amorphous Ni80.4W1.5P18.1 alloy by O-2 oxidation and H-2 reduction treatments have been studied by XPS, UPS and ISS. It shows that addition of tungsten in the amorphous Ni-P alloy leads to dramatic changes of the relating component distributions in the surface layers before and after these treatments. Oxidation of a Ni80.4W1.5P18.1 amorphous alloy in 1 bar of oxygen at 513 K caused a significant segregation of nickel in different oxide states at the surface. The subsequent reduction of the oxidized surface with I bar hydrogen at 553 K resulted in only a small portion of Ni and P being reduced into elemental states, while most of them was found to combine to form a kind of nickel phosphate compound. On the other hand, under the same conditions, the oxidation and reduction of a Ni80P20 alloy gave rise to metallic Ni and elemental P as the predominate species on the alloy surface. The addition of W in the amorphous alloy might act as nuclei for a favorable formation of the phosphate structure which was proposed to be an active species for hydrogen-relating catalytic reactions. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Two kinds of rating bias ——halo effect and ego-centric effect were analyzed in multitrait-multirater matrix by this research. To get the multitrait-multirater matrix, ten college students watched the video-tapes of football matches and rated the performance of the players on several traits. After the interviewing of 41 football fans, the performance traits of four different positions in a football team were obtained using critical incident technique. The results indicate: comparing the heterotrait-monorater triangless, some rater's rating showed halo effect obviously; comparing the monotrait-heterorater diagonals, ego-centric effect can be shown in some extent on different traits. There were less interrater reliability on the rating of some ambiguous traits. The conclusion can be used on rater training. We can give the raters feedback about their rating bias by analyzing the multitrait-multirater matrix. The results are also helpful for rater training.
Resumo:
To explore the neural mechanisms underlying conditioned immunomodulation, this study employed the classical taste aversion (CTA) behavioral paradigm to establish the conditioned humoral and cellular immunosuppression (CIS) in Wistar rats, by paring saccharin (CS) with intraperitoneal (i.p.) injection of an immunosuppressive drug cyclophophamide (UCS). C-fos immunohistochemistry method was used to observe the changes of the neuronal activities in the rat brain during the acquisition, expression and extinction of the conditioned immunosuppression (CIS). The followings are the main results: 1. Five days after one trial of CS-UCS paring, reexposure to CS alone significantly decreased the level of the anti-ovalbumin (OVA) IgG in the peripheral serum. Two trials of CS-UCS paring and three reexposures to CS not only resulted in further suppression of the primary immune response, but also reduced the numbers of peripheral lymphocytes and white blood cells. This finding indicates that CS can induce suppression of the immune function, and the magnitude of the effects is dependent on the intensity of training. 2. On day 5 following two trials of CS-UCS pairing, CS suppressed the spleen lymphocytes responsiveness to mitogens ConA, PHA and PWM, and decreased the numbers of peripheral lymphocytes and white blood cells. On day 15, only PHA induced lymphocyte proliferation was suppressed by CS. On day 30, presentation of CS did not have any effect on these immune parameters. These results suggest that the conditioned suppression of the cellular immune function can retain 5-15 days, and extinct after 30 days. 3. CTA was easily induced by one or two CS-UCS parings, and remained robust even after 30 days. These data demonstrate that CIS can be dissociated from CTA, and they may be mediated by different neural mechanisms. 4. Immunohistochemistry assays revealed a broad pattern of c-fos expression throughout the rat brain following the CS-UCS pairing and reexposure to CS, suggesting that many brain regions are involved in CIS. Some brain areas including the solitary tract nucleus (Sol), lateral parabrachial nucleus (LPB) and insular cortex (IC), showed high level c-fos expressions in response to both CS and UCS, suggesting that they may be involved in the transmission and integration of the CS and UCS signals in the brain. There were dense c-FOS positive neurons in the paraverntricular nucleus (PVN) and supraoptic nucleus (SO) of hypothalamus, subfornical organ (SFO) and area postrema (AP) etc. after two trials of CS-UCS paring and after the reexposure to CS 5 days later, but not in the first training and after the extinction of CIS (30 days later). The results reflect that these nuclei may have an important role in CIS expression, and may also response to the immunosuppression of UCS. The conditioned training and reexposure to CS 5 days later induced high level c-fos expression in the cingulate cortex (Cg), central amygdaloid nucleus (Ce), intermediate part of lateral septal nucleus (LSI) and ventrolateral parabrachial nucleus (VLPB) etc. But c-fos induction was not apparent when presenting CS 30 days later. These brain regions are mainly involved in CIS, and may be critical structures in the acquisition and expression of CIS. Some brain regions, including the frontal cortex (Fr), ventral orbital cortex (VO), IC, perirhinal cortex (PRh), LPB and the medial part of solitary nucleus (SolM), showed robust c-FOS expression following the conditioning training and reexposure to CS both on day 5 and day 30, suggesting that they are critically involved in CTA.
Resumo:
Growth of MCM-22 zeolite films on glass substrates was studied with the focus on the understanding of the unusual vertical crystal orientation. The films formed were characterized by scanning electron microscopy and X-ray diffraction. Separate thin disk-like MCM-22 crystals were found vertically oriented at the early crystallization stage. With crystallization the crystals grew into thick disks and finally into continuous films. The vertically oriented MCM-22 thin crystals could be developed from the orientation of columnar MCM-22 nuclei, which have larger parameters in their c-directions than those in a and b directions. The preferred orientation of MCM-22 nuclei and the fast growth rate in the layer direction are responsible for the vertical growth of MCM-22 zeolite films. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
EI Mikhailova, SP Sosnikhina, GA Kirillova, OA Tikholiz, VG Smirnov, RN Jones and G Jenkins (2001). Nuclear dispositions of subtelomeric and pericentromeric chromosomal domains during meiosis in asynaptic mutants of rye (Secale cereale L.). Journal of Cell Science, 114 (10), 1875-1882. Sponsorship: Russian Foundation for Basic Research (grants 00-04-48522/ 99-04-48182) RAE2008
Resumo:
Wydział Fizyki
Resumo:
A neuroanatomical parcellation system is described which encompasses the entire cerebral cortex and the cerebellum. The cortical system modified version of the scheme described by Caviness et al. (1996) and is designed particularly for studies of speech processing. The cerebellum is parcellated into 6 cortical regions of interest (ROIs) and an ROI representing the deep cerebellar nuclei in each hemisphere. The boundaries of each ROI are based on individual anatomical markers that are clearly visible from standard structural MRI acquistions. The system permits averaginh of functional imaging data sets from multiple sujects while accounting for individual anatomical variability. Used in conjuction with region-of-interest analysis techniques such as that described by Nieto-Castanon et al. (2003), the parcellation system provides a more powerful means of analyzing functional data.
Resumo:
The "teaching signal" that modulates reinforcement learning at cortico-striatal synapses may be a sequence composed of an adaptively scaled DA burst, a brief ACh burst, and a scaled ACh pause. Such an interpretation is consistent with recent data on cholinergic interneurons of the striatum are tonically active neurons (TANs) that respond with characteristic pauses to novel events and to appetitive and aversive conditioned stimuli. Fluctuations in acetylcholine release by TANs modulate performance- and learning- related dynamics in the striatum. Whereas tonic activity emerges from intrinsic properties of these neurons, glutamatergic inputs from thalamic centromedian-parafascicular nuclei, and dopaminergic inputs from midbrain are required for the generation of pause responses. No prior computational models encompass both intrinsic and synaptically-gated dynamics. We present a mathematical model that robustly accounts for behavior-related electrophysiological properties of TANs in terms of their intrinsic physiological properties and known afferents. In the model balanced intrinsic hyperpolarizing and depolarizing currents engender tonic firing, and glutamatergic inputs from thalamus (and cortex) both directly excite and indirectly inhibit TANs. If the latter inhibition, probably mediated by GABAergic NOS interneurons, exceeds a threshold, its effect is amplified by a KIR current to generate a prolongued pause. In the model, the intrinsic mechanisms and external inputs are both modulated by learning-dependent dopamine (DA) signals and our simulations revealed that many learning-dependent behaviors of TANs are explicable without recourse to learning-dependent changes in synapses onto TANs.
Resumo:
A full understanding of consciouness requires that we identify the brain processes from which conscious experiences emerge. What are these processes, and what is their utility in supporting successful adaptive behaviors? Adaptive Resonance Theory (ART) predicted a functional link between processes of Consciousness, Learning, Expectation, Attention, Resonance, and Synchrony (CLEARS), includes the prediction that "all conscious states are resonant states." This connection clarifies how brain dynamics enable a behaving individual to autonomously adapt in real time to a rapidly changing world. The present article reviews theoretical considerations that predicted these functional links, how they work, and some of the rapidly growing body of behavioral and brain data that have provided support for these predictions. The article also summarizes ART models that predict functional roles for identified cells in laminar thalamocortical circuits, including the six layered neocortical circuits and their interactions with specific primary and higher-order specific thalamic nuclei and nonspecific nuclei. These prediction include explanations of how slow perceptual learning can occur more frequently in superficial cortical layers. ART traces these properties to the existence of intracortical feedback loops, and to reset mechanisms whereby thalamocortical mismatches use circuits such as the one from specific thalamic nuclei to nonspecific thalamic nuclei and then to layer 4 of neocortical areas via layers 1-to-5-to-6-to-4.
Resumo:
This article develops the Synchronous Matching Adaptive Resonance Theory (SMART) neural model to explain how the brain may coordinate multiple levels of thalamocortical and corticocortical processing to rapidly learn, and stably remember, important information about a changing world. The model clarifies how bottom-up and top-down processes work together to realize this goal, notably how processes of learning, expectation, attention, resonance, and synchrony are coordinated. The model hereby clarifies, for the first time, how the following levels of brain organization coexist to realize cognitive processing properties that regulate fast learning and stable memory of brain representations: single cell properties, such as spiking dynamics, spike-timing-dependent plasticity (STDP), and acetylcholine modulation; detailed laminar thalamic and cortical circuit designs and their interactions; aggregate cell recordings, such as current-source densities and local field potentials; and single cell and large-scale inter-areal oscillations in the gamma and beta frequency domains. In particular, the model predicts how laminar circuits of multiple cortical areas interact with primary and higher-order specific thalamic nuclei and nonspecific thalamic nuclei to carry out attentive visual learning and information processing. The model simulates how synchronization of neuronal spiking occurs within and across brain regions, and triggers STDP. Matches between bottom-up adaptively filtered input patterns and learned top-down expectations cause gamma oscillations that support attention, resonance, and learning. Mismatches inhibit learning while causing beta oscillations during reset and hypothesis testing operations that are initiated in the deeper cortical layers. The generality of learned recognition codes is controlled by a vigilance process mediated by acetylcholine.
Resumo:
The giant cholinergic interneurons of the striatum are tonically active neurons (TANs) that respond with characteristic pauses to novel events and to appetitive and aversive conditioned stimuli. Fluctuations in acetylcholine release by TANs modulate performance- and learning-related dynamics in the striatum. Whereas tonic activity emerges from intrinsic properties of these neurons, glutamatergic inputs from thalamic centromedian-parafascicular nuclei, and dopaminergic inputs from midbrain, are required for the generation of pause responses. No prior computational models encompass both intrinsic and synaptically-gated dynamics. We present a mathematical model that robustly accounts for behavior-related electrophysiological properties of TANs in terms of their intrinsic physiological properties and known afferents. In the model, balanced intrinsic hyperpolarizing and depolarizing currents engender tonic firing, and glutamatergic inputs from thalamus (and cortex) both directly excite and indirectly inhibit TANs. If the latter inhibition, presumably mediated by GABAergic interneurons, exceeds a threshold, its effect is amplified by a KIR current to generate a prolonged pause. In the model, the intrinsic mechanisms and external inputs are both modulated by learning-dependent dopamine (DA) signals and our simulations revealed that many learning-dependent behaviors of TANs are explicable without recourse to learning-dependent changes in synapses onto TANs. The "teaching signal" that modulates reinforcement learning at cortico-striatal synapses may be a sequence composed of an adaptively scaled DA burst, a brief ACh burst, and a scaled ACh pause. Such an interpretation is consistent with recent data on cholinergic control of LTD of cortical synapses onto striatal spiny projection neurons.