963 resultados para hairy roots
Resumo:
Objectives This qualitative study aims at understanding the consequences of body deconstruction through mastectomy on corporality and identity in women with breast cancer. Design Nineteen women were contacted through the hospital. All had to undergo mastectomy. Some were offered immediate breast reconstruction, others, because of cancer treatments, had no planned reconstruction. A qualitative reflexive methodological background was chosen. Method Women were invited to participate in three semi-structured interviews, one shortly before or after mastectomy, and the other interviews later in their illness courses, after surgery. All interviews were transcribed verbatim. Thematic analysis was performed. The analysis of the first interview of each woman is presented in this article. Results Mastectomy provokes a painful experience of body deconstruction. Even when immediate reconstruction is proposed, contrasted feelings and dissonance are expressed when comparing the former healthy body to the present challenged body entity. Body transformations are accompanied with experiences of mutilation, strangeness, and modify the physical, emotional social, symbolic and relational dimensions of the woman's gendered identity. Although the opportunity of breast reconstruction is seen as a possible recovery of a lost physical symmetry and body integrity, grieving the past body and integrating a new corporality leads to a painful identity crisis. Conclusion With mastectomy, the roots of the woman's identity are challenged, leading to a re-evaluation of her existential values. The consequences of mastectomy transform the woman's corporality and embodiment, and question her identity. Psychological support is discussed in the perspective of our results.
Resumo:
A quantitative model of water movement within the immediate vicinity of an individual root is developed and results of an experiment to validate the model are presented. The model is based on the assumption that the amount of water transpired by a plant in a certain period is replaced by an equal volume entering its root system during the same time. The model is based on the Darcy-Buckingham equation to calculate the soil water matric potential at any distance from a plant root as a function of parameters related to crop, soil and atmospheric conditions. The model output is compared against measurements of soil water depletion by rice roots monitored using γ-beam attenuation in a greenhouse of the Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo(ESALQ/USP) in Piracicaba, State of São Paulo, Brazil, in 1993. The experimental results are in agreement with the output from the model. Model simulations show that a single plant root is able to withdraw water from more than 0.1 m away within a few days. We therefore can assume that root distribution is a less important factor for soil water extraction efficiency.
Resumo:
Wound responses in plants have to be coordinated between organs so that locally reduced growth in a wounded tissue is balanced by appropriate growth elsewhere in the body. We used a JASMONATE ZIM DOMAIN 10 (JAZ10) reporter to screen for mutants affected in the organ-specific activation of jasmonate (JA) signaling in Arabidopsis thaliana seedlings. Wounding one cotyledon activated the reporter in both aerial and root tissues, and this was either disrupted or restricted to certain organs in mutant alleles of core components of the JA pathway including COI1, OPR3, and JAR1. In contrast, three other mutants showed constitutive activation of the reporter in the roots and hypocotyls of unwounded seedlings. All three lines harbored mutations in Novel Interactor of JAZ (NINJA), which encodes part of a repressor complex that negatively regulates JA signaling. These ninja mutants displayed shorter roots mimicking JA-mediated growth inhibition, and this was due to reduced cell elongation. Remarkably, this phenotype and the constitutive JAZ10 expression were still observed in backgrounds lacking the ability to synthesize JA or the key transcriptional activator MYC2. Therefore, JA-like responses can be recapitulated in specific tissues without changing a plant's ability to make or perceive JA, and MYC2 either has no role or is not the only derepressed transcription factor in ninja mutants. Our results show that the role of NINJA in the root is to repress JA signaling and allow normal cell elongation. Furthermore, the regulation of the JA pathway differs between roots and aerial tissues at all levels, from JA biosynthesis to transcriptional activation.
Resumo:
Summary Phosphorus is one of the major macronutrients required for plant growth and development. Plant roots acquire phosphorus as inorganic phosphate (Pi), which is further distributed to the shoot, via the transpiration stream and root pressure, where Pi is imported again into cells. PHO1 in Arabidopsis has been identified as a protein involved in the loading of Pi into the root xylem. PHO1 does not have any homology to described Pi transporters including the Pht1 family of H+/ Pi cotransporters. PHO1 bears two domains, SPX and EXS domains, previously identified in Saccharomyces cerevisiae proteins involved in Pi transport and/or sensing, or in sorting proteins to endomembranes. Phylogenetic analysis of the PHO1 gene family revealed the presence of three clusters, with PHO1 and PHO1;H1 forming one cluster. The biological significance behind this cluster was demonstrated by the complementation of the pho1 mutant with only PHO1 and PHO1;H1, of all the PHO1 family members, when expressed under the PHO1 promoter. PHO1 has been shown to be expressed mostly in the root vascular cylinder and at low level in the shoot. PHO1;H1 had a different expression pattern, being expressed in both root and shoot vascular cylinder to the same level, with the levels in leaves increasing with the leaf maturity, suggesting additional role of PHO1;H1 in the Pi mobilization in leaves. In order to further explore the role of PHO1, Pi dynamics was studied on plants expressing PHO1 at different levels compared to the wild type: PHO1 overexpressors, PHO1 underexpressors and the pho1 mutant. Overexpression of the PHO1 protein in the shoot vascular tissue was shown to lead to increased Pi efflux out of the leaf cells and Pi accumulation in the shoot xylem apoplast compared to wild type, confirming the hypothesized role of PHO1 in xylem loading with Pi. The overexpression of PHO1 in the shoot was responsible far both changed Pi dynamic and stunted growth of PHO1 overexpressors, as shown by grafting experiments between wild type and PHO1 overexpressor. We found a ca. 2 fold decrease of shoot phosphorus and a 5-10 fold decrease in vacuolar Pi content in the PHO1 underexpressors and the pho1 null mutant compared to wild type, consistent with the role of PHO1 in the transfer of Pi from the root to the shoot. Shoot Pi deficiency results in a poor growth of the pho1 mutant. Grafting experiments between pho1 and wild type confirmed that both Pi deficiency and stunt growth of the pho1 mutant were dependent on the pho1 root, further supporting the importance of PHO1 in the root xylem loading with Pi. The pho1 mutant and the PHO1 underexpressors accumulated 8-15 fold more Pi in the root relative to wild type. In contrast to the pho1 mutant, the growth of PHO1 underexpressors was not impaired by the low shoat Pi content. This finding suggests that either PHO1 protein or root Pi concentration is important in Pi signaling and development of Pi deficiency symptoms leading to reduced growth. Résumé Le phosphore est l'un des nutriments essentiels à la croissance et au développement des plantes. Les racines absorbent le phosphore sous forme de phosphate inorganique (Pi) qui est dirigé, par la transpiration et la pression de la racine, vers les feuilles où le phosphate est acquis par les cellules. La protéine PHO1 a été démontrée indispensable au chargement du Pi dans le xylème des racines d'Arabidopsis. PHO1 ne démontre pas d'homologie aux transporteurs de Pi connus, incluant la famille Pht1 de cotransporteurs H+/Pi qui ont comme fonction le transport du phosphate à l'intérieur de la cellule. PHO1 contient deux domaines, SPX et EXS, aussi présents dans des protéines de Saccharomyces cerevisiae impliquées dans le transport ou la perception du phosphate, ou dans la localisation des protéines vers différentes membranes. Le génome d'Arabidopsis contient onze gènes homologues à PHO1. Neuf de ces homologues sont répartis en trois groupes. PHO1 et PHO1;H1 forment un de ces groupes. Nos travaux ont démontré que seuls PHO1;H1 et PHO1, sous contrôle du promoteur PHO1, peuvent complémenter le mutant pho1. PHO1 est exprimé principalement dans le cylindre vasculaire de la racine et faiblement dans la partie aérienne. Le degré d'expression de PHO1;H1 est similaire dans le cylindre vasculaire de la racine et des feuilles. Ceci suggère que PHO1;H1 est aussi impliqué dans la mobilisation du Pi dans les feuilles, en plus de son rôle dans le transfert du Pi dans le xylème des racines. Afin de mieux explorer le rôle de PHO1, la dynamique du phosphate a été observée dans trois lignées de plantes transgéniques: un sur-expresseur de PHO1, un sous-expresseur de PHO1 et le mutant pho1. La sur-expression de PHO1 dans le tissue vasculaire des feuilles a provoqué l'efflux du Pi vers l'espace apoplastic du xylème, ce qui confirme le rôle de PHO1 dans le chargement du Pi dans le xylème. La sur-expressìon de PHO1 dans la rosette est responsable d'un changement de la dynamique du Pi et de la diminution de la croissance, ce qui fut démontré par une expérience de greffe de la rosette du sur-expresseur de PHO1 sur les racines du sauvage. On a observé pour le sous-expresseur de PHO1 et le mutant pho1 une diminution du phosphore d'environ 2 fais au niveau des feuilles, et une diminution de 5-10 fois du Pi dans les vacuoles des feuilles, par rapport au sauvage. Ceci confirme le rôle proposé de PHO1 dans le transfert du Pi des racines aux feuilles. La carence de Pi chez pho1 implique une diminution de la taille de la rosette. Pour expliquer ce phénotype une autre expérience de greffe démontra que la cause de ce changement provenait des racines. Ceci renforce l'hypothèse de l'importance du rôle de PHO1 dans le xylème de la racine pour le chargement du Pi. Le mutant phot et le sous-expresseur de PHO1 accumulent 8-15 fois plus de Pi dans leurs racines comparé au sauvage. Cependant, contrairement au phot mutant, le sous-expresseur de PHO1 avait une croissance comparable au sauvage malgré le niveau bas du Pi dans les feuilles. Ceci suggère que la taille de la rosette lors d'une carence en Pi chez Arabidopsis serait la conséquence d'un changement de concentration de Pi dans les racines ou d'une influence de la protéine PHO1.
Resumo:
The molecular mechanisms regulating the initial uptake of inorganic sulfate in plants are still largely unknown. The current model for the regulation of sulfate uptake and assimilation attributes positive and negative regulatory roles to O-acetyl-serine (O-acetyl-Ser) and glutathione, respectively. This model seems to suffer from exceptions and it has not yet been clearly validated whether intracellular O-acetyl-Ser and glutathione levels have impacts on regulation. The transcript level of the two high-affinity sulfate transporters SULTR1.1 and SULTR1.2 responsible for sulfate uptake from the soil solution was compared to the intracellular contents of O-acetyl-Ser, glutathione, and sulfate in roots of plants submitted to a wide diversity of experimental conditions. SULTR1.1 and SULTR1.2 were differentially expressed and neither of the genes was regulated in accordance with the current model. The SULTR1.1 transcript level was mainly altered in response to the sulfur-related treatments. Split-root experiments show that the expression of SULTR1.1 is locally regulated in response to sulfate starvation. In contrast, accumulation of SULTR1.2 transcripts appeared to be mainly related to metabolic demand and is controlled by photoperiod. On the basis of the new molecular insights provided in this study, we suggest that the expression of the two transporters depends on different regulatory networks. We hypothesize that interplay between SULTR1.1 and SULTR1.2 transporters could be an important mechanism to regulate sulfate content in the roots
Resumo:
Communities of arbuscular mycorrhizal fungi (AMF) were surveyed in different South Australian ecosystems. The soil was wet-sieved for spore extraction, followed by the determination of presence and abundance of AMF species as well as the percentage of root colonization. Mycorrhizal associations were common and there was substantial fungal diversity in different ecosystems. Spores were most abundant in the permanent pasture system and less abundant under continuous wheat. The incidence of mycorrhizal associations in different plant species and the occurrence of Arum and Paris type colonization generally conformed with previous information. Spores of seventeen AMF were verified throughout seasonal changes in 1996 and 1997 in the permanent pasture and on four host species (Lolium perenne, Plantago lanceolata, Sorghum sp. and Trifolium subterraneum) , set up with the same soils under greenhouse conditions. Glomus mosseae was the dominant spore type at all sampling times and in all trap cultures. Mycorrhizal diversity was significantly affected by different sampling times in trap cultures but not in field-collected soil. P. lanceolata, Sorghum sp. and T. subterraneum as hosts for trap cultures showed no differences in richness and diversity of AMF spores that developed in association with their roots. Abundance and diversity were lowest, however, in association with L. perenne , particularly in December 1996. Results show that the combination of spore identification from field-collected soil and trap cultures is essential to study population and diversity of AMF. The study provides baseline data for ongoing monitoring of mycorrhizal populations using conventional methods and material for the determination of the symbiotic effectiveness of AMF key members.
Resumo:
The root system is fundamentally important for plant growth and survival because of its role in water and nutrient uptake. Therefore, plants rely on modulation of root system architecture (RSA) to respond to a changing soil environment. Although RSA is a highly plastic trait and varies both between and among species, the basic root system morphology and its plasticity are controlled by inherent genetic factors. These mediate the modification of RSA, mostly at the level of root branching, in response to a suite of biotic and abiotic factors. Recent progress in the understanding of the molecular basis of these responses suggests that they largely feed through hormone homeostasis and signaling pathways. Novel factors implicated in the regulation of RSA in response to the myriad endogenous and exogenous signals are also increasingly isolated through alternative approaches such as quantitative trait locus analysis.
Resumo:
The endodermis represents the main barrier to extracellular diffusion in plant roots, and it is central to current models of plant nutrient uptake. Despite this, little is known about the genes setting up this endodermal barrier. In this study, we report the identification and characterization of a strong barrier mutant, schengen3 (sgn3). We observe a surprising ability of the mutant to maintain nutrient homeostasis, but demonstrate a major defect in maintaining sufficient levels of the macronutrient potassium. We show that SGN3/GASSHO1 is a receptor-like kinase that is necessary for localizing CASPARIAN STRIP DOMAIN PROTEINS (CASPs)--major players of endodermal differentiation--into an uninterrupted, ring-like domain. SGN3 appears to localize into a broader band, embedding growing CASP microdomains. The discovery of SGN3 strongly advances our ability to interrogate mechanisms of plant nutrient homeostasis and provides a novel actor for localized microdomain formation at the endodermal plasma membrane.
Resumo:
Erosion is deleterious because it reduces the soil's productivity capacity for growing crops and causes sedimentation and water pollution problems. Surface and buried crop residue, as well as live and dead plant roots, play an important role in erosion control. An efficient way to assess the effectiveness of such materials in erosion reduction is by means of decomposition constants as used within the Revised Universal Soil Loss Equation - RUSLE's prior-land-use subfactor - PLU. This was investigated using simulated rainfall on a 0.12 m m-1 slope, sandy loam Paleudult soil, at the Agriculture Experimental Station of the Federal University of Rio Grande do Sul, in Eldorado do Sul, State of Rio Grande do Sul, Brazil. The study area had been covered by native grass pasture for about fifteen years. By the middle of March 1996, the sod was mechanically mowed and the crop residue removed from the field. Late in April 1996, the sod was chemically desiccated with herbicide and, about one month later, the following treatments were established and evaluated for sod biomass decomposition and soil erosion, from June 1996 to May 1998, on duplicated 3.5 x 11.0 m erosion plots: (a) and (b) soil without tillage, with surface residue and dead roots; (c) soil without tillage, with dead roots only; (d) soil tilled conventionally every two-and-half months, with dead roots plus incorporated residue; and (e) soil tilled conventionally every six months, with dead roots plus incorporated residue. Simulated rainfall was applied with a rotating-boom rainfall simulator, at an intensity of 63.5 mm h-1 for 90 min, eight to nine times during the experimental period (about every two-and-half months). Surface and subsurface sod biomass amounts were measured before each rainfall test along with the erosion measurements of runoff rate, sediment concentration in runoff, soil loss rate, and total soil loss. Non-linear regression analysis was performed using an exponential and a power model. Surface sod biomass decomposition was better depicted by the exponential model, while subsurface sod biomass was by the power model. Subsurface sod biomass decomposed faster and more than surface sod biomass, with dead roots in untilled soil without residue on the surface decomposing more than dead roots in untilled soil with surface residue. Tillage type and frequency did not appreciably influence subsurface sod biomass decomposition. Soil loss rates increased greatly with both surface sod biomass decomposition and decomposition of subsurface sod biomass in the conventionally tilled soil, but they were minimally affected by subsurface sod biomass decomposition in the untilled soil. Runoff rates were little affected by the studied treatments. Dead roots plus incorporated residues were effective in reducing erosion in the conventionally tilled soil, while consolidation of the soil surface was important in no-till. The residual effect of the turned soil on erosion diminished gradually with time and ceased after two years.
Resumo:
En los últimos años, el uso turístico de las áreas protegidas ha aumentado considerablemente, y con él, el grado de impacto. Es por este motivo que se requieren medidas de gestión adecuadas para identificar, conocer y evaluar estos impactos potenciales y así poder actuar ofreciendo un uso recreativo de estas áreas a la vez que se asegura su conservación. El objetivo del presente trabajo fue establecer el grado de impacto que sufre la vegetaciòn y el suelo del Parque Nacional de Tierra del Fuego en las zonas de acampada y compararlas con las áreas adyacentes, como controles. Asimismo, se buscó establecer cuales son los indicadores de impacto de mayor relevancia para poder ser usados como herramientas de gestión. La evaluación se efectuó mediante el muestreo de 40 parcelas, transectas y intertransectas en donde se analizaron variables vegetacionales (cobertura arbórea, arbustiva y herbácea, porcentaje de suelo desnudo, daño en árboles y arbustos, y presencia de raíces expuestas) y del suelo (pH, materia orgánica, densidad aparente y humedad). El grado de impacto se estableció numéricamente con una fórmula matemática en donde se seleccionaron los parámetros evaluados y se corrigieron con factores de correción, dando un impacto clasificado como “compatible” en el área de Río Pipo y “moderado” en el área de Laguna Verde. También se formularon propuestas de manejo para prevenir y/o minimizar los impactos producidos en las zonas de camping.
Resumo:
In the ecologically important arbuscular mycorrhizal fungi (AMF), Sod1 encodes a functional polypeptide that confers increased tolerance to oxidative stress and that is upregulated inside the roots during early steps of the symbiosis with host plants. It is still unclear whether its expression is directed at scavenging reactive oxygen species (ROS) produced by the host, if it plays a role in the fungus-host dialogue, or if it is a consequence of oxidative stress from the surrounding environment. All these possibilities are equally likely, and molecular variation at the Sod1 locus can possibly have adaptive implications for one or all of the three mentioned functions. In this paper, we analyzed the diversity of the Sod1 gene in six AMF species, as well as 14 Glomus intraradices isolates from a single natural population. By sequencing this locus, we identified a large amount of nucleotide and amino acid molecular diversity both among AMF species and individuals, suggesting a rapid divergence of its codons. The Sod1 gene was monomorphic within each isolate we analyzed, and quantitative PCR strongly suggest this locus is present as a single copy in G. intraradices. Maximum-likelihood analyses performed using a variety of models for codon evolution indicated that a number of amino acid sites most likely evolved under the regime of positive selection among AMF species. In addition, we found that some isolates of G. intraradices from a natural population harbor very divergent orthologous Sod1 sequences, and our analysis suggested that diversifying selection, rather than recombination, was responsible for the persistence of this molecular diversity within the AMF population.
Resumo:
P>1. Root herbivores and pathogens interfere with basic below-ground plant function, and can thereby affect plant fitness and spatial and temporal patterns in natural plant communities. However, there has been little development of concepts and theories on below-ground plant defence, a deficit that is in contrast to the abundance of theorizing for above-ground plant parts.2. A review of the past 10 years of research on below-ground plant-herbivore interactions has revealed that, similar to above-ground tissues, root defences can be expressed constitutively or induced upon herbivore attack, and can be classified into direct and indirect traits, tolerance, and escape. Indeed, it has been shown that roots tolerate herbivory by outgrowing or re-growing lost tissues, or resist it by producing secondary metabolites that are toxic to herbivores or attract natural enemies of herbivores.3. We propose that, similar to above-ground plant-herbivore theories, the partition of abiotic and biotic factors over ecological succession can serve as the basis for predicting investment in defence strategies below-ground.4. Investigation of herbivore pressure and root responses along primary and secondary successional gradients suggests that: (i) roots are often fast growing, thinner and softer in early compared to later succession. (ii) Insect and nematode herbivore pressure increases until mid-succession and later decreases. (iii) Mycorrhizal abundance increases with succession, and the composition of fungal species changes through succession, often shifting from arbuscular mycorrhizae to ecto-mycorrhizae.5. Based on these findings, and on classical (above-ground) plant defence theory, we suggest the following set of testable hypotheses for below-ground plant defence: (i) During succession, early plants invest most of their resources in growth and less in defences (associated with a general lack of herbivores and pathogens, and with limited availability of resources in the system), therefore relying more on re-growth (tolerance) strategies. (ii) During mid-succession, a buildup of herbivore pressure facilitates replacement by plant species that exhibit greater direct and indirect defence strategies. (iii) Constitutive and inducible levels of defences may trade-off, and early successional plants should rely more on induction of defences after herbivore attack, whereas late successional plants will increasingly rely on constitutively produced levels of physical and chemical defence. (iv) Successional changes in microbial associations have consequences for root defence by improving plant nutrition and defence expression as well as directly competing for root space; however, toxic or impenetrable root defences may also limit association with root symbionts, and so may constrain the expression of root defence.
Resumo:
The application of plant-beneficial pseudomonads provides a promising alternative to chemical pest management in agriculture. The fact that Pseudomonas fluorescens CHA0 and Pf-5, both well-known biocontrol agents of fungal root diseases, exhibit also potent insecticidal activity is of particular interest, as these plant-beneficial bacteria naturally colonize the rhizosphere of important crop plants. Insecticidal activity in these strains depends on a novel locus encoding the production of a protein toxin termed Fit (for P. fluorescens insecticidal toxin). To gain a better understanding of the ecological relevance of the Pseudomonas anti-insect activity, we have begun to investigate the occurrence and molecular diversity of the Fit toxin genes among root-associated pseudomonads. To this end, we have screened a large world-wide collection of fluorescent Pseudomonas sp. isolated from the roots of different plant species using molecular fingerprinting techniques. The strains are already well characterized for exoproduct patterns and disease-suppressive ability and are currently being tested for insecticidal activity in a greater wax moth larvae assay system.
Resumo:
Summary Inorganic phosphate (Pi) is a main limiting nutrient to the growth and production yield of plants in many agro-ecosystems. Plants have evolved a series of metabolic and developmental adaptations to cope with low Pi availability. PH01 has been identified as a protein involved in the loading of Pi into the xylem of roots in Arabidopsis. In this study, the PHO1 gene family in both higher plant Arabidopsis and lower plant Physcomitrella was characterized. Additional ten PHO1 homologues in Arabidopsis and three homologues in Physcomitrella were identified. All proteins harbor a SPX tripartite domain in the N-terminal hydrophilic portion and an EXS domain in the highly conserved C-terminal hydrophobic portion. RT-PCR analysis of the Arabidopsis PHO1 genes revealed a broad pattern of expression in leaves, roots, stems, and flowers for most genes, although two genes are expressed exclusively in flowers, indicating their potential roles not only in Pi transport but also in Pi homeostasis within the Arabidopsis plant. The regulation of gene expression by different nutrient-starvations showed that some genes are strongly up-regulated by elements other than Pi, e.g. by NO3, Mg, and Zn starvation. Northern blot and RT-PCR analysis showed distinct expression patterns of the three Physcomitrella PHO1 genes. The investigation of Pi starvation effects on some Pi-deprivation responsive genes demonstrates that Physcomitrella has evolved a similar mechanism as higher plants to respond to Pi deficiency. Promoter activity analysis for the Physcomitrella PHO1 family genes using promoter-GUS fusions revealed their expression in protonemata and gametophores but at different levels and with different patterns, suggesting these genes may play distinct roles in Pi transport and/or Pi homeostasis in the moss plant. Single knockout mutants of the three genes were generated by gene targeting and one of them displayed a reduced Pi content in the protonemata under Pi starvation. The evolution of the PHO1 family in land plants was also discussed. Together, these findings indicate that the PHO1 family genes, present in a broad range of plant species from lower plants to flowering plants, play important roles in Pi transport and homeostasis. Résumé Le phosphate inorganique (Pi) est un nutriment essentiel à la croissance des plantes et au rendement de la production végétale. Dans beaucoup d'agro-écosystèmes, ce nutriment est limitant. Les plantes ont développé des adaptations métaboliques et développementales pour palier à la faible disponibilité du Pi. Il a été démontré que la protéine PHOI est indispensable au transfert du Pi dans le xylème des racines d' Arabidopsis. Cette étude porte sur la famille de gènes définie par PHO1 ; ceci, dans deux organismes modèles : la plante Arabidopsis pour les végétaux supérieurs, et la mousse Physcomitrella pour les végétaux inférieurs. Dix homologues à PHOI dans Arabidopsis et trois homologues dans Physcomitrella ont été identifiés. Toutes les protéines encodées présentent un domaine tripartite SPX dans leur partie N terminale hydrophile et un domaine EXS dans la partie C terminale hydrophobe hautement conservée d'entre eux. L'analyse par RT-PCR de l'expression des gènes PHO1 dans Arabidopsis révèle une expression ectopique pour la plupart, à l'exception de deux gènes dont l'expression est uniquement florale ; ceci suggère l'implication de cette famille non seulement dans le transport mais aussi dans l'homéostasie du Pi dans Arabidopsis. L'observation de l'expression de ces gènes en fonction de l'absence de différents nutriments montre que certains gènes sont fortement régulés lors de carences en NO3, Mg et Zn. L'analyse par northern blot et RT-PCR met en évidence des profils d'expression distincts pour les trois gènes de Physcomitrella. Les effets de la carence en Pi sur Physcomitrella ont été étudiés par le biais de gènes dépendants connus pour Arabidopsis, les résultats suggèrent un mode de réponse à cette carence conservé entre les végétaux inférieurs et supérieurs. La localisation tissulaire de l'expression de la famille PHO1 dans la mousse a été étudiée au moyen du gène rapporteur GUS fusionné aux différents promoteurs. Ceci a révélé leur expression dans les protonemata et les gametophores, mais à des intensités et avec des profils différents, ce qui suggère des implications distinctes dans le transport et/ou l'homéostasie du Pi dans la mousse. Des simples mutants knockout ont été générés pour chaque gène de mousse ; l'un d'eux présente une diminution du contenu protonemal en Pi lorsque soumis à une carence en Pi. L'évolution de la famille PHO1 dans les plantes terrestres est également discutée. Ensemble, ces résultats indiquent que les gènes de la famille PHO1 sont présents dans une large gamme de plantes allant des végétaux inférieurs aux supérieurs, et cette étude démontre que leur conservation se justifie potentiellement par le fait qu'ils sont probablement impliqués dans des mécanismes conservés de transport et d'homéostasie du Pi.
Resumo:
Differences among plants in their ability to support nutritional stress periods may be caused by a differential vacuole capacity of ion storage and release and may also depend on the intensity of nutrient re-translocation under such conditions. In five soybean cultivars, submitted to eight days of P deprivation, the dry matter production and the contents of three phosphorus (P) forms - inorganic (Pi), organic (Po), and acid-soluble total (Pts) of different plant organs were determined. Pi release velocity (RSPi) was estimated as the tangent to the equations obtained for Pi f(t) at the point t = 2 days (the mean point in the period of greatest Pi decrease), considering that -deltaPi/deltat expresses the rate of Pi release. The internal Pi buffering capacity (IBCPi) was calculated as the inverse of the RSPi. Cultivars' differences in size of the non-metabolic Pi pool, RSPi, and the ability to transport Pi from less to more actively metabolizing regions were evaluated. The preferential Pi source and sink compartments under limited P absorption conditions were also evaluated. The cultivar Santa Rosa showed the highest Pi storage ability when the external supply was high, and a more intensive release under low P supply conditions than IAC8 and UFV1. The cultivar Uberaba was superior to Doko in its ability to store and use Pi. In all cultivars, upper leaves and roots were the main sink of Pi stored in the middle and lower leaves. Roots and upper leaves showed larger RSPi and lower IBCPi values than middle and lower leaves.