915 resultados para grafted random copolymers montmorillonite overall crystallization rate isothermal crystallization rate poly(L-lactide)
Resumo:
While others have attempted to determine, by way of mathematical formulae, optimal resource duplication strategies for random walk protocols, this paper is concerned with studying the emergent effects of dynamic resource propagation and replication. In particular, we show, via modelling and experimentation, that under any given decay (purge) rate the number of nodes that have knowledge of particular resource converges to a fixed point or a limit cycle. We also show that even for high rates of decay - that is, when few nodes have knowledge of a particular resource - the number of hops required to find that resource is small.
Resumo:
How speech is separated perceptually from other speech remains poorly understood. Recent research suggests that the ability of an extraneous formant to impair intelligibility depends on the modulation of its frequency, but not its amplitude, contour. This study further examined the effect of formant-frequency variation on intelligibility by manipulating the rate of formant-frequency change. Target sentences were synthetic three-formant (F1?+?F2?+?F3) analogues of natural utterances. Perceptual organization was probed by presenting stimuli dichotically (F1?+?F2C?+?F3C; F2?+?F3), where F2C?+?F3C constitute a competitor for F2 and F3 that listeners must reject to optimize recognition. Competitors were derived using formant-frequency contours extracted from extended passages spoken by the same talker and processed to alter the rate of formant-frequency variation, such that rate scale factors relative to the target sentences were 0, 0.25, 0.5, 1, 2, and 4 (0?=?constant frequencies). Competitor amplitude contours were either constant, or time-reversed and rate-adjusted in parallel with the frequency contour. Adding a competitor typically reduced intelligibility; this reduction increased with competitor rate until the rate was at least twice that of the target sentences. Similarity in the results for the two amplitude conditions confirmed that formant amplitude contours do not influence across-formant grouping. The findings indicate that competitor efficacy is not tuned to the rate of the target sentences; most probably, it depends primarily on the overall rate of frequency variation in the competitor formants. This suggests that, when segregating the speech of concurrent talkers, differences in speech rate may not be a significant cue for across-frequency grouping of formants.
Resumo:
The thesis is divided into four chapters. They are: introduction, experimental, results and discussion about the free ligands and results and discussion about the complexes. The First Chapter, the introductory chapter, is a general introduction to the study of solid state reactions. The Second Chapter is devoted to the materials and experimental methods that have been used for carrying out tile experiments. TIle Third Chapter is concerned with the characterisations of free ligands (Picolinic acid, nicotinic acid, and isonicotinic acid) by using elemental analysis, IR spectra, X-ray diffraction, and mass spectra. Additionally, the thermal behaviour of free ligands in air has been studied by means of thermogravimetry (TG), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC) measurements. The behaviour of thermal decomposition of the three free ligands was not identical Finally, a computer program has been used for kinetic evaluation of non-isothermal differential scanning calorimetry data according to a composite and single heating rate methods in comparison with the methods due to Ozawa and Kissinger methods. The most probable reaction mechanism for the free ligands was the Avrami-Erofeev equation (A) that described the solid-state nucleation-growth mechanism. The activation parameters of the decomposition reaction for free ligands were calculated and the results of different methods of data analysis were compared and discussed. The Fourth Chapter, the final chapter, deals with the preparation of cobalt, nickel, and copper with mono-pyridine carboxylic acids in aqueous solution. The prepared complexes have been characterised by analyses, IR spectra, X-ray diffraction, magnetic moments, and electronic spectra. The stoichiometry of these compounds was ML2x(H20), (where M = metal ion, L = organic ligand and x = water molecule). The environments of cobalt, nickel, and copper nicotinates and the environments of cobalt and nickel picolinates were octahedral, whereas the environment of copper picolinate [Cu(PA)2] was tetragonal. However, the environments of cobalt, nickel, and copper isonicotinates were polymeric octahedral structures. The morphological changes that occurred throughout the decomposition were followed by SEM observation. TG, DTG, and DSC measurements have studied the thermal behaviour of the prepared complexes in air. During the degradation processes of the hydrated complexes, the crystallisation water molecules were lost in one or two steps. This was also followed by loss of organic ligands and the metal oxides remained. Comparison between the DTG temperatures of the first and second steps of the dehydration suggested that the water of crystallisation was more strongly bonded with anion in Ni(II) complexes than in the complexes of Co(II) and Cu(II). The intermediate products of decomposition were not identified. The most probable reaction mechanism for the prepared complexes was also Avrami-Erofeev equation (A) characteristic of solid-state nucleation-growth mechanism. The tempemture dependence of conductivity using direct current was determined for cobalt, nickel, Cl.nd copper isonicotinates. An activation energy (ΔΕ), the activation energy (ΔΕ ) were calculated.The ternperature and frequency dependence of conductivity, the frequency dependence of dielectric constant, and the dielectric loss for nickel isonicotinate were determined by using altemating current. The value of s paralneter and the value of'density of state [N(Ef)] were calculated. Keyword Thermal decomposition, kinetic, electrical conduclion, pyridine rnono~ carboxylic acid, cOlnplex, transition metal compJex.
Resumo:
A study has been made of the anionic polymerisation of methyl methacrylate using butyllithium and polystyryl lithium as initiators and the effects of lithium chloride and aluminium alkyls on the molecular weight and molecular weight distributions. Diblock copolymers of styrene-b-methyl methacrylate were synthesised at -78oC in THF in the presence of lithium chloride, and at ambient temperatures in toluene in the presence of aluminium alkyls. Studies in the presence of lithium chloride showed that the polymerisation was difficult to control; there was no conclusive evidence of a living system and the polydispersity indices were between 1.5 and 3. However, using relatively apolar solvents, in the presence of aluminium alkyls, homopolymerisation of methyl methacrylate showed characteristics of a living polymerisation. An investigation of the effects of the structures of the lithium and aluminium alkyls on the efficiency of initiation showed that a t-butyllithium/triisobutylaluminium initiating system exhibited an efficiency of 80%, compared with lower efficiencies (typically 30%) for systems based on butyllithium/triethylaluminium.The polydispersity index was found to decrease from ∼2.2 to ∼1.5 when butyllithium was replaced by t-butyllithium. The efficiency of the initiator was found to be solely dependent on the size of the alkyl group of the aluminium component, whereas the polydispersity index was found to be solely dependent on the size of the alkyl group on the lithium component. The aluminium alkyl is thought to be co-ordinated to the ester carbonyl groups of both the monomer and polymer. There is a critical degree of polymerisation, at which point the rate of polymerisation decreases, which probably relates to a change in structure of the active chain end. Characterisation of poly(styrene )-b-poly(4-vinylpyridine) and poly(styrene)-b-poly(4-vinylpyridine methyl iodide) diblock copolymers using static light scattering techniques, showed the formation of star-shaped 'reverse' micelles when placed in toluene. Temperature effects on micellization behaviour are only exhibited for the unquaternised micelles, which showed characterisically lower aggregation numbers than their quaternised counterparts. A suitable solvent was not obtained for characterisation of the styrene-b-methyl methacrylate diblock copolymers synthesized.
Resumo:
Various monoacrylic compounds containing a hindered phenol function (e.g.3,5-di-tert.-butyl-4-hydroxy benzyl alcohol, DBBA and vinyl-3-[3',5'-di-tert.-butyl-4-hydroxy phenyl] propionate, VDBP), and a benzophenone function (2-hydroxy-4-[beta hydroxy ethoxy] benzophenone, HAEB) were synthesised and used as reactive antioxidants (AO's) for polypropylene (PP). These compounds were reacted with PP melt in the presence of low concentration of a free radical generator such a peroxide (reactive processing) to produce bound-antioxidant concentrates. The binding reaction of these AO's onto PP was found to be low and this was shown to be mainly due to competing reactions such as homopolymerisation of the antioxidant. At high concentrations of peroxide, higher binding efficiency resulted, but, this was accompanied by melt degradation of the polymer. In a special reactive processing procedure, a di- or a trifunctional reactant (referred to as coagent), e.g.tri-methylol propane tri-acrylate, Tris, and Divinyl benzene, DVB, were used with the antioxidant and this has led to an enhanced efficiency of the grating reaction of antioxidants on the polymer in the melt. The evidence suggests that this is due to copolymerisation of the antioxidants with the coagent as well as grafting of the copolymers onto the polymer backbone. Although the 'bound' AO's containing a UV stabilising function showed lower overall stabilisation effect than the unbound analogues before extraction, they were still much more effective when subjected to exhaustive solvent extraction. Furthermore, a very effective synergistic stabilising activity when two reactive AO's containing thermal and UV stabilising functions e.g. DBBA and HAEB, were reactively processed with PP in the presence of a coagent. The stabilising effectiveness of such a synergist was much higher than that of the unbound analogues both before and after extraction. Analysis using the GPC technique of concentrates containing bound-DBBA processed in the presence of Tris coagent showed higher molecular weight (Mn), compared to that of a polymer processed without the coagent, but was still lower than that of the control processed PP with no additives. This indicates that Tris coagent may inhibit further melt degradation of the polymer. Model reactions of DBBA in liquid hydrocarbon (decalin) and analysis of the products using FTIR and NMR spectroscopy showed the formation of grafted DBBA onto decalin molecules as well as homopolymerisation of the AO. In the presence of Tris coagent, copolymerisation of DBBA with the Tris inevitably occured; which was followed by grafting of the copolymer onto the decalin, FTIR and NMR results of the polymer concentrates containing bound-DBBA processed with and without Tris, showed similar behaviour as the above model reactions. This evidence supports the effect of Tris in enhancing the efficiency of the reaction of DBBA in the polymer melt. Reactive procesing of HAEB in polymer melts exhibited crosslinking formation In the early stages of the reaction, however, in the final stage, the crosslinked structure was 'broken down' or rearranged to give an almost gel free polymer with high antioxidant binding efficiency.
Resumo:
Pilot scale studies of high rate filtration were initiated to assess its potential as either a primary 'roughing' filter to alleviate the seasonal overloading of low rate filters on Hereford sewage treatment works - caused by wastes from cider production - or as a two stage high rate process to provide complete sewage treatment. Four mineral and four plastic primary filter media and two plastic secondary filter media were studied. The hydraulic loading applied to the primary plastic media (11.2 m3 /m3 .d) was twice that applied to the mineral media. The plastic media removed an average around 66 percent and the mineral media around 73 percent of the BOD applied when the 90 percentile BOD concentration was 563 mg/1. At a hydraulic loading of 4 m3 /m3 .d the secondary filters removed most of the POD from partially settled primary filter effluents, with one secondary effluent satisfying a 25 mg/1 BOD and 30 mg/1 SS standard. No significant degree of nitrification was achieved. Fungi dominated the biological film of the primary filters, with invertebrate grazers having little influence on film levels. Ponding did not arise, and modular media supported lower film levels than random-fill types. Secondary filter film levels were low, being dominated by bacteria. The biological loading applied to the filters was related to sludge dewaterability, with the most readily conditionable sludges produced by filters supporting heavy film. Sludges produced by random-fill media could be dewatered as readily as those produced by low rate filters treating the same sewage. Laboratory scale studies showed a relationship between log effluent BOD and nitrification achieved by biological filters. This relationship and the relationship between BOD load applied and removed observed in all filter media could he used to optimise operating conditions required in biological filters to achieve given effluent BOD and ammoniacal nitrogen standards.
Resumo:
Random number generation is a central component of modern information technology, with crucial applications in ensuring communications and information security. The development of new physical mechanisms suitable to directly generate random bit sequences is thus a subject of intense current research, with particular interest in alloptical techniques suitable for the generation of data sequences with high bit rate. One such promising technique that has received much recent attention is the chaotic semiconductor laser systems producing high quality random output as a result of the intrinsic nonlinear dynamics of its architecture [1]. Here we propose a novel complementary concept of all-optical technique that might dramatically increase the generation rate of random bits by using simultaneously multiple spectral channels with uncorrelated signals - somewhat similar to use of wave-division-multiplexing in communications. We propose to exploit the intrinsic nonlinear dynamics of extreme spectral broadening and supercontinuum (SC) generation in optical fibre, a process known to be often associated with non-deterministic fluctuations [2]. In this paper, we report proof-of concept results indicating that the fluctuations in highly nonlinear fibre SC generation can potentially be used for random number generation.
Resumo:
Polyethylene (a 1:1 blend of m-LLDPE and z-LLDPE) double layer silicate clay nanocomposites were prepared by melt extrusion using a twin screw extruder. Maleic anhydride grafted polyethylene (PEgMA) was used as a compatibiliser to enhance the dispersion of two organically modified monmorilonite clays (OMMT): Closite 15A (CL15) and nanofill SE 3000 (NF), and natural montmorillonite (NaMMT). The clay dispersion and morphology obtained in the extruded nanocomposite samples were fully characterised both after processing and during photo-oxidation by a number of complementary analytical techniques. The effects of the compatibiliser, the organoclay modifier (quartenary alkyl ammonium surfactant) and the clays on the behaviour of the nanocomposites during processing and under accelerated weathering conditions were investigated. X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), rheometry and attenuated reflectance spectroscopy (ATR-FTIR) showed that the nanocomposite structure obtained is dependent on the type of clay used, the presence or absence of a compatibiliser and the environment the samples are exposed to. The results revealed that during processing PE/clay nanocomposites are formed in the presence of the compatibiliser PEgMA giving a hybrid exfoliated and intercalated structures, while microcomposites were obtained in the absence of PEgMA; the unmodified NaMMT-containing samples showed encapsulated clay structures with limited extent of dispersion in the polymer matrix. The effect of processing on the thermal stability of the OMMT-containing polymer samples was determined by measuring the additional amount of vinyl-type unsaturation formed due to a Hoffman elimination reaction that takes place in the alkyl ammonium surfactant of the modified clay at elevated temperatures. The results indicate that OMMT is responsible for the higher levels of unsaturation found in OMMT-PE samples when compared to both the polymer control and the NaMMT-PE samples and confirms the instability of the alkyl ammonium surfactant during melt processing and its deleterious effects on the durability aspects of nanocomposite products. The photostability of the PE/clay nanocomposites under accelerated weathering conditions was monitored by following changes in their infrared signatures and mechanical properties. The rate of photo-oxidation of the compatibilised PE/PEgMA/OMMT nanocomposites was much higher than that of the PE/OMMT (in absence of PEgMA) counterparts, the polymer controls and the PE–NaMMT sample. Several factors have been observed that can explain the difference in the photo-oxidative stability of the PE/clay nanocomposites including the adverse role played by the thermal decomposition products of the alkyl ammonium surfactant, the photo-instability of PEgMA, unfavourable interactions between PEgMA and products formed in the polymer as a consequence of the degradation of the surfactant on the clay, as well as a contribution from a much higher extent of exfoliated structures, determined by TEM, formed with increasing UV-exposure times.
Resumo:
Protein crystallization has gained a new strategic and commercial relevance in the postgenomic era due to its pivotal role in structural genomics. Producing high quality crystals has always been a bottleneck to efficient structure determination, and this problem is becoming increasingly acute. This is especially true for challenging, therapeutically important proteins that typically do not form suitable crystals. The OptiCryst consortium has focused on relieving this bottleneck by making a concerted effort to improve the crystallization techniques usually employed, designing new crystallization tools, and applying such developments to the optimization of target protein crystals. In particular, the focus has been on the novel application of dual polarization interferometry (DPI) to detect suitable nucleation; the application of in situ dynamic light scattering (DLS) to monitor and analyze the process of crystallization; the use of UV-fluorescence to differentiate protein crystals from salt; the design of novel nucleants and seeding technologies; and the development of kits for capillary counterdiffusion and crystal growth in gels. The consortium collectively handled 60 new target proteins that had not been crystallized previously. From these, we generated 39 crystals with improved diffraction properties. Fourteen of these 39 were only obtainable using OptiCryst methods. For the remaining 25, OptiCryst methods were used in combination with standard crystallization techniques. Eighteen structures have already been solved (30% success rate), with several more in the pipeline.
Resumo:
Pulse generation often requires a stabilized cavity and its corresponding mode structure for initial phase-locking. Contrastingly, modeless cavity-free random lasers provide new possibilities for high quantum efficiency lasing that could potentially be widely tunable spectrally and temporally. Pulse generation in random lasers, however, has remained elusive since the discovery of modeless gain lasing. Here we report coherent pulse generation with modeless random lasers based on the unique polarization selectivity and broadband saturable absorption of monolayer graphene. Simultaneous temporal compression of cavity-free pulses are observed with such a polarization modulation, along with a broadly-tunable pulsewidth across two orders of magnitude down to 900 ps, a broadly-tunable repetition rate across three orders of magnitude up to 3 MHz, and a singly-polarized pulse train at 41 dB extinction ratio, about an order of magnitude larger than conventional pulsed fiber lasers. Moreover, our graphene-based pulse formation also demonstrates robust pulse-to-pulse stability and widewavelength operation due to the cavity-less feature. Such a graphene-based architecture not only provides a tunable pulsed random laser for fiber-optic sensing, speckle-free imaging, and laser-material processing, but also a new way for the non-random CW fiber lasers to generate widely tunable and singly-polarized pulses.
Resumo:
We suggest a model for data losses in a single node (memory buffer) of a packet-switched network (like the Internet) which reduces to one-dimensional discrete random walks with unusual boundary conditions. By construction, the model has critical behavior with a sharp transition from exponentially small to finite losses with increasing data arrival rate. We show that for a finite-capacity buffer at the critical point the loss rate exhibits strong fluctuations and non-Markovian power-law correlations in time, in spite of the Markovian character of the data arrival process.
Resumo:
Ethylene-propylene rubber (EPR) functionalised with glycidyl methacrylate (GMA) (f-EPR) during melt processing in the presence of a co-monomer, such as trimethylolpropane triacrylate (Tris), was used to promote compatibilisation in blends of polyethylene terephthalate (PET) and f-EPR, and their characteristics were compared with those of PET/f-EPR reactive blends in which the f-EPR was functionalised with GMA via a conventional free radical melt reaction (in the absence of a co-monomer). Binary blends of PETand f-EPR (with two types of f-EPR prepared either in presence or absence of the co-monomer) with various compositions (80/20, 60/40 and 50/50 w/w%) were prepared in an internal mixer. The blends were evaluated by their rheology (from changes in torque during melt processing and blending reflecting melt viscosity, and their melt flow rate), morphology scanning electron microscopy (SEM), dynamic mechanical properties (DMA), Fourier transform infrared (FTIR) analysis, and solubility (Molau) test. The reactive blends (PET/f-EPR) showed a marked increase in their melt viscosities in comparison with the corresponding physical (PET/EPR) blends (higher torque during melt blending), the extent of which depended on the amount of homopolymerised GMA (poly-GMA) present and the level of GMA grafting in the f-EPR. This increase was accounted for by, most probably, the occurrence of a reaction between the epoxy groups of GMA and the hydroxyl/carboxyl end groups of PET. Morphological examination by SEM showed a large improvement of phase dispersion, indicating reduced interfacial tension and compatibilisation, in both reactive blends, but with the Tris-GMA-based blends showing an even finer morphology (these blends are characterised by absence of poly-GMA and presence of higher level of grafted GMA in its f-EPR component by comparison to the conventional GMA-based blends). Examination of the DMA for the reactive blends at different compositions showed that in both cases there was a smaller separation between the glass transition temperatures compared to their position in the corresponding physical blends, which pointed to some interaction or chemical reaction between f-EPR and PET. The DMA results also showed that the shifts in the Tgs of the Tris-GMA-based blends were slightly higher than for the conventional GMA-blends. However, the overall tendency of the Tgs to approach each other in each case was found not to be significantly different (e.g. in a 60/40 ratio the former blend shifted by up to 4.5 °C in each direction whereas in the latter blend the shifts were about 3 °C). These results would suggest that in these blends the SEM and DMA analyses are probing uncorrelatable morphological details. The evidence for the formation of in situ graft copolymer between the f-EPR and PET during reactive blending was clearly illustrated from analysis by FTIR of the separated phases from the Tris-GMA-based reactive blends, and the positive Molau test pointed out to graft copolymerisation in the interface. A mechanism for the formation of the interfacial reaction during the reactive blending process is proposed.
Resumo:
Ultrathin alumina monolayers grafted onto an ordered mesoporous SBA-15 silica framework afford a composite catalyst support with unique structural properties and surface chemistry. Palladium nanoparticles deposited onto Al-SBA-15 via wet impregnation exhibit the high dispersion and surface oxidation characteristic of pure aluminas, in conjunction with the high active site densities characteristic of thermally stable, high-area mesoporous silicas. This combination confers significant rate enhancements in the aerobic selective oxidation (selox) of cinnamyl alcohol over Pd/Al-SBA-15 compared to mesoporous alumina or silica supports. Operando, liquid-phase XAS highlights the interplay between dissolved oxygen and the oxidation state of palladium nanoparticles dispersed over Al-SBA-15 towards on-stream reduction: ambient pressures of flowing oxygen are sufficient to hinder palladium oxide reduction to metal, enabling a high selox activity to be maintained, whereas rapid PdO reduction and concomitant catalyst deactivation occurs under static oxygen. Selectivity to the desired cinnamaldehyde product mirrors these trends in activity, with flowing oxygen minimising CO cleavage of the cinnamyl alcohol reactant to trans-β-methylstyrene, and of cinnamaldehyde decarbonylation to styrene. © 2013 Elsevier B.V.
Resumo:
Models for the conditional joint distribution of the U.S. Dollar/Japanese Yen and Euro/Japanese Yen exchange rates, from November 2001 until June 2007, are evaluated and compared. The conditional dependency is allowed to vary across time, as a function of either historical returns or a combination of past return data and option-implied dependence estimates. Using prices of currency options that are available in the public domain, risk-neutral dependency expectations are extracted through a copula repre- sentation of the bivariate risk-neutral density. For this purpose, we employ either the one-parameter \Normal" or a two-parameter \Gumbel Mixture" specification. The latter provides forward-looking information regarding the overall degree of covariation, as well as, the level and direction of asymmetric dependence. Specifications that include option-based measures in their information set are found to outperform, in-sample and out-of-sample, models that rely solely on historical returns.
Resumo:
Rotation invariance is important for an iris recognition system since changes of head orientation and binocular vergence may cause eye rotation. The conventional methods of iris recognition cannot achieve true rotation invariance. They only achieve approximate rotation invariance by rotating the feature vector before matching or unwrapping the iris ring at different initial angles. In these methods, the complexity of the method is increased, and when the rotation scale is beyond the certain scope, the error rates of these methods may substantially increase. In order to solve this problem, a new rotation invariant approach for iris feature extraction based on the non-separable wavelet is proposed in this paper. Firstly, a bank of non-separable orthogonal wavelet filters is used to capture characteristics of the iris. Secondly, a method of Markov random fields is used to capture rotation invariant iris feature. Finally, two-class kernel Fisher classifiers are adopted for classification. Experimental results on public iris databases show that the proposed approach has a low error rate and achieves true rotation invariance. © 2010.