972 resultados para genetically modified mice
Resumo:
We have generated proteoliposomes carrying proteins of Topanosoma cruzi for use as immunogens in BALB/c mice. T cruzi trypomastigote and amastigote forms were sonicated and mixed with SDS, with 94% recovery of soluble proteins. To prepare proteoliposomes, we have used a protocol in which dipalmitoylphosphatidylcholine, dipalmitoyl-phosphatidylserine and cholesterol were incubated with the parasite proteins. BALB/c mice immunized with 20 mu g were able to generate antibodies which, in Western blotting, reacted with the proteins of T cruzi. We further investigated the ability of peritoneal cells from immunized mice to arrest the intracellular replication of trypomastigotes, in vitro. After 72h of culture, the number of intracellular parasites in immunized macrophages decreased significantly, as compared to controls. Despite the fact that exposure of mice to T cruzi proteins incorporated into proteoliposomes generate antibodies and activate macrophages, the immunized mice were not protected against T cruzi intraperitoneal challenge. (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In this work, a fast, non destructive voltammetric method for cocaine detection in acetonitrile medium using a platinum disk electrode chemically modified with cobalt-hexacyanoferrate (CoHCFe) film is described. The deposition of CoHCFe film at platinum disk (working electrode) was carried out in aqueous solution containing NaClO(4) at 0.1 mol L(-1) as supporting electrolite. Stability studies of the film and subsequent voltammetric analysis of cocaine were made in acetonitrile medium with NaClO4 at 0.1 mol L(-1) as supporting electrolite. A reversible interaction between cocaine and CoHCFe at the film produces a proportional decrease of original peak current, due to the formation of a complex between cocaine and cobalt ions, with subsequent partial passivation of the film surface, being the intensity of current decrease used as analytical signal for cocaine. A linear dependence of cocaine detection was carried out in the range from 2.4 x 10 x 4 to 1.5 x 10(-3) mol L(-1), with a linear correlation coefficient of 0.994 and a detection limit of 1.4 x 10 x 4 mol L(-1). The analysis of confiscated samples by the proposed method indicated cocaine levels from 37% to 95% (m/m) and these results were validated by comparison to HPLC technique, being obtained good correlation between both methods. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Mice show urinary scent marking behavior as a form of social communication. Marking to a conspecific stimulus mouse or odor varies with stimulus familiarity, indicating discrimination of novel and familiar animals. This study investigated Fos immunoreactivity in inbred C57BL/6J (C57) males following scent marking behavior in response to detection of a social stimulus, or discrimination between a familiar and an unfamiliar conspecific. In Experiment 1 C57 mice were exposed for four daily trials to an empty chamber; on a test day they were exposed to the same chamber or to a male CD-1 mouse in that chamber. Increased scent marking to the CD-1 mouse was associated with increased Fos-immunoreactive cells in the basolateral amygdala, medial amygdala, and dorsal and ventral premammillary nuclei. In Experiment 2 C57 mice were habituated to a CD-1 male for 4 consecutive days and, on the 5th day, exposed to the same CD-1 male, or to a novel CD-1 male. Mice exposed to a novel CD-1 displayed a significant increase in scent marking compared to their last exposure to the familiar stimulus, indicating discrimination of the novelty of this social stimulus. Marking to the novel stimulus was associated with enhanced activation of several telencephalic, as well as hypothalamic and midbrain, structures in which activation had not been seen in the detection paradigm (Experiment 1). These included medial prefrontal and piriform cortices, and lateral septum; the paraventricular nuclei, ventromedial nuclei, and lateral area of the hypothalamus, and the ventrolateral column of the periaqueductal gray. These data suggest that a circumscribed group of structures largely concerned with olfaction is involved in detection of a conspecific olfactory stimulus, whereas discrimination of a novel vs. a familiar conspecific stimulus engages a wider range of forebrain structures encompassing higher-order processes and potentially providing an interface between cognitions and emotions. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
IL-1 is a key proinflammatory driver of several autoimmune diseases including juvenile inflammatory arthritis, diseases with mutations in the NALP/cryopyrin complex and Crohn’s disease, and is genetically or clinically associated with many others. IL-1 is a pleiotropic proinflammatory cytokine; however the mechanisms by which increased IL-1 signaling promotes autoreactive T cell activity are not clear. Here we show that autoimmune-prone NOD and IL-1 receptor antagonist-deficient C57BL/6 mice both produce high levels of IL-1, which drives autoreactive effector cell expansion. IL-1beta drives proliferation and cytokine production by CD4+CD25+FoxP3– effector/memory T cells, attenuates CD4+CD25+FoxP3+ regulatory T cell function, and allows escape of CD4+CD25– autoreactive effectors from suppression. Thus, inflammation or constitutive overexpression of IL-1beta in a genetically predisposed host can promote autoreactive effector T cell expansion and function, which attenuates the ability of regulatory T cells to maintain tolerance to self.
Resumo:
Because CD4(+) T cells play a key role in aiding cellular immune responses, we wanted to assess whether increasing numbers of gene-engineered antigen-restricted CD4(+) T cells could enhance an antitumor response mediated by similarly gene-engineered CD8(+) T cells. In this study, we have used retroviral transduction to generate erbB2-reactive mouse T-cell populations composed of various proportions of CD4(+) and CD8(+) cells and then determined the antitumor reactivity of these mixtures. Gene-modified CD4(+) and CD8(+) T cells were shown to specifically secrete Tc1 (T cytotoxic-1) or Tc2 cytokines, proliferate, and lyse erbB2(+) tumor targets following antigen ligation in vitro. In adoptive transfer experiments using severe combined immunodeficient (scid) mice, we demonstrated that injection of equivalent numbers of antigen-specific engineered CD8(+) and CD4(+) T cells led to significant improvement in survival of mice bearing established lung metastases compared with transfer of unfractionated (largely CD8(+)) engineered T cells. Transferred CD4(+) T cells had to be antigen-specific (not just activated) and secrete interferon gamma (IFN-gamma) to potentiate the antitumor effect. Importantly, antitumor responses in these mice correlated with localization and persistence of gene-engineered T cells at the tumor site. Strikingly, mice that survived primary tumor challenge could reject a subsequent re-challenge. Overall, this study has highlighted the therapeutic potential of using combined transfer of antigen-specific gene-modified CD8(+) and CD4(+) T cells to significantly enhance T-cell adoptive transfer strategies for cancer therapy.
Resumo:
Diverse infectious and inflammatory environmental triggers, through unknown mechanisms, initiate autoimmune disease in genetically predisposed individuals. Here we show that IL-1b, a key cytokine mediator of the inflammatory response, suppresses CD25+CD4+ regulatory T cell function. Surprisingly, suppression by IL-1b occurs only where antigen is presented simultaneously to CD25+CD4+ T cells and to CD25CD4+ antigen-specific effector T cells. Further, NOD mice show an intrinsic over-production of IL-1 that contributes to reduced CD25+CD4+ regulatory T cell function. Thus, inflammation or constitutive over-expression of IL-1b in a genetically predisposed host can initiate a positive feedback loop licensing autoantigen-specific effector cells to inhibit the regulatory T cells maintaining tolerance to self.
Resumo:
RelB, NIK and TRAF6-deficient mice die prematurely with multi-organ inflammatory disease and apparent excessive myelopoiesis. While thymic development of CD4+CD25+ regulatory T cells (Treg) is reduced in TRAF6 deficient mice, the impact of this on inflammation is not known. Here we show that while RelB deficient thymic stroma is unable to sustain the development of Treg, surprisingly, FoxP3hi Treg are increased in the periphery. Peripheral expansion of Treg is driven by GITRligand, expressed by immature monocytes maintained by RelBdeficient stroma. RelB-deficient DC fail to activate Treg suppressor function. The data reveal the dual roles of RelB in both hemopoietic and stromal cells to maintain tolerance and contain inflammation through Treg and DC.
Resumo:
Matricellular proteins play a unique role in the skeleton as regulators of bone remodeling, and the matricellular protein osteonectin (SPARC, BM-40) is the most abundant non-collagenous protein in bone In. the absence of osteonectin, mice develop progressive low turnover osteopenia, particularly affecting trabecular bone. Polymorphisms in a regulatory region of the osteonectin gene are associated with bone mass in a subset of idiopathic osteoporosis patients, and these polymorphisms likely regulate osteonectin expression. Thus it is important to determine how osteonectin gene dosage affects skeletal function. Moreover, intermittent administration of parathyroid hormone (PTH) (1-34) is the only anabolic therapy approved for the treatment of osteoporosis, and it is critical to understand how modulators of bone remodeling, such as osteonectin, affect skeletal response to anabolic agents. In this study, 10 week old female wild type, osteonectin-haploinsufficient, and osteonectin-null mice (C57Bl/6 genetic background) were given 80 mu g/kg body weight/day PTH(1-34) for 4 weeks. Osteonectin gene dosage had a profound effect on bone microarchitecture. The connectivity density of trabecular bone in osteonectin-haploinsufficient mice was substantially decreased compared with that of wild type mice, suggesting compromised mechanical properties. Whereas mice of each genotype had a similar osteoblastic response to PTH treatment, the osteoclastic response was accentuated in osteonectin-haploinsufficient and osteonectin-null mice. Eroded surface and osteoclast number were significantly higher in PTH-treated osteonectin-null mice, as was endosteal area. In vitro studies confirmed that PTH induced the formation of more osteoclast-like cells in marrow from osteonectin-null mice compared with wild type. PTH treated osteonectin-null bone marrow cells expressed more RANKL mRNA compared with wild type. However, the ratio of RANKL:OPG mRNA was somewhat lower in PTH treated osteonectin-null cultures. Increased expression of RANKL in response to PTH could contribute to the accentuated osteoclastic response in osteonectin(-/-) mice, but other mechanisms are also likely to be involved. The molecular mechanisms by which PTH elicits bone anabolic vs. bone catabolic effects remain poorly understood. Our results imply that osteonectin levels may play a role in modulating the balance of bone formation and resorption in response to PTH. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Sulfate is required for detoxification of xenobiotics such as acetaminophen (APAP), a leading cause of liver failure in humans. The NaS1 sulfate transporter maintains blood sulfate levels sufficiently high for sulforiation reactions to work effectively for drug detoxification. In the present study, we identified two loss-of-function polymorphisms in the human NaS1 gene and showed the Nas1-null mouse to be hypersensitive to APAP hepatotoxicity. APAP treatment led to increased liver damage and decreased hepatic glutathione levels in the hyposulfatemic Nas1-null mice compared with that in normosulfatemic wild-type mice. Analysis of urinary APAP metabolites revealed a significantly lower ratio of APAP-sulfate to APAP-glucuronide in the Nas1-null mice. These results suggest hyposulfatemia increases sensitivity to APAP-induced hepatotoxicity by decreasing the sulfonation capacity to metabolize APAP. In conclusion, the results of this study highlight the importance of plasma sulfate level as a key modulator of acetaminophen metabolism and suggest that individuals with reduced NaS1 sulfate transporter function would be more sensitive to hepatotoxic agents.
Resumo:
IL-1 is a key proinflammatory driver of several autoimmune diseases including juvenile inflammatory arthritis, diseases with mutations in the NALP/cryopyrin complex and Crohn's disease, and is genetically or clinically associated with many others. IL-1 is a pleiotropic proinflammatory cytokine; however the mechanisms by which increased IL-1 signaling promotes autoreactive T cell activity are not clear. Here we show that autoimmune-prone NOD and IL-1 receptor antagonist-deficient C57BL/6 mice both produce high levels of IL-1, which drives autoreactive effector cell expansion. IL-1 beta drives proliferation and cytokine production by CD4(+)CD25(+)FoxP3(-) effector/memory T cells, attenuates CD4(+)CD25(+)FoxP3(+) regulatory T cell function, and allows escape of CD4(+)CD25(-) autoreactive effectors from suppression. Thus, inflammation or constitutive overexpression of IL-1 beta in a genetically predisposed host can promote autoreactive effector T cell expansion and function, which attenuates the ability of regulatory T cells to maintain tolerance to self.
Resumo:
Infections caused by the yeast Candida albicans represent an increasing threat to debilitated and immunosuppressed patients, and neutropenia is an important risk factor. Monoclonal antibody depletion of neutrophils in mice was used to study the role of these cells in host resistance. Ablation of neutrophils increased susceptibility to both systemic and vaginal challenge. The fungal burden in the kidney increased threefold on day 1, and 100-fold on day 4, and infection was associated with extensive tissue destruction. However, a striking feature of the disseminated disease in neutrophil-depleted animals was the altered pattern of organ involvement. The brain, which is one of the primary target organs in normal mice, was little affected. There was a threefold increase in the number of organisms recovered from the brains of neutrophil-depleted mice on day 4 after infection, but detectable abscesses were rare. In contrast, the heart, which in normal mice shows only minor lesions, developed severe tissue damage following neutrophil depletion. Mice deficient in C5 demonstrated both qualitative and quantitative increases in the severity of infection after neutrophil depletion when compared with C5-sufficient strains. The results are interpreted as reflecting organ-specific differences in the mechanisms of host resistance.
Resumo:
To explore the hypothesis that air pollution promotes cardiovascular changes, Swiss mice were continuously exposed, since birth, in two open-top chambers (filtered and nonfiltered for airborne particles <= 0.3 mu m) placed 20 m from a street with heavy traffic in downtown Sao Paulo, twenty-four hours per day for four months. Fine particle (PM(2.5)) concentration was determined gravimetrically; hearts were analyzed by morphometry. There was a reduction of the PM(2.5) inside the filtered chamber (filtered = 8.61 +/- 0.79 mu g/m(3), nonfiltered = 18.05 +/- 1.25 mu g/m(3), p < .001). Coronary arteries showed no evidence of luminal narrowing in the exposed group but presented higher collagen content in the adventitia of LV large-sized and RV midsized vessels (p = .001) and elastic fibers in both tunicae adventitia and intima-media of almost all sized arterioles from both ventricles (p = .03 and p = .001, respectively). We concluded that chronic exposure to urban air since birth induces mild but significant vascular structural alterations in normal individuals, presented as coronary arteriolar fibrosis and elastosis. These results might contribute to altered vascular response and ischemic events in the adulthood.