957 resultados para generalized hypergeometric functions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and effective algorithm is introduced for the system identification of Wiener system based on the observational input/output data. The B-spline neural network is used to approximate the nonlinear static function in the Wiener system. We incorporate the Gauss-Newton algorithm with De Boor algorithm (both curve and the first order derivatives) for the parameter estimation of the Wiener model, together with the use of a parameter initialization scheme. The efficacy of the proposed approach is demonstrated using an illustrative example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give an asymptotic expansion for the Taylor coe±cients of L(P(z)) where L(z) is analytic in the open unit disc whose Taylor coe±cients vary `smoothly' and P(z) is a probability generating function. We show how this result applies to a variety of problems, amongst them obtaining the asymptotics of Bernoulli transforms and weighted renewal sequences.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article introduces generalized beta-generated (GBG) distributions. Sub-models include all classical beta-generated, Kumaraswamy-generated and exponentiated distributions. They are maximum entropy distributions under three intuitive conditions, which show that the classical beta generator skewness parameters only control tail entropy and an additional shape parameter is needed to add entropy to the centre of the parent distribution. This parameter controls skewness without necessarily differentiating tail weights. The GBG class also has tractable properties: we present various expansions for moments, generating function and quantiles. The model parameters are estimated by maximum likelihood and the usefulness of the new class is illustrated by means of some real data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Roots, stems, branches and needles of 160 Norway spruce trees younger than 10 years were sampled in seven forest stands in central Slovakia in order to establish their biomassfunctions (BFs) and biomassexpansionfactors (BEFs). We tested three models for each biomass pool based on the stem base diameter, tree height and the two parameters combined. BEF values decreased for all spruce components with increasing height and diameter, which was most evident in very young trees under 1 m in height. In older trees, the values of BEFs did tend to stabilise at the height of 3–4 m. We subsequently used the BEFs to calculate dry biomass of the stands based on average stem base diameter and tree height. Total stand biomass grew with increasing age of the stands from about 1.0 Mg ha−1 at 1.5 years to 44.3 Mg ha−1 at 9.5 years. The proportion of stem and branch biomass was found to increase with age, while that of needles was fairly constant and the proportion of root biomass did decrease as the stands grew older.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic approach is presented for obtaining cylindrical distribution functions (CDF's) of noncrystalline polymers which have been oriented by extension. The scattering patterns and CDF's are also sharpened by the method proposed by Deas and by Ruland. Data from atactic poly(methyl methacrylate) and polystyrene are analysed by these techniques. The methods could also be usefully applied to liquid crystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we perform an analytical and numerical study of Extreme Value distributions in discrete dynamical systems. In this setting, recent works have shown how to get a statistics of extremes in agreement with the classical Extreme Value Theory. We pursue these investigations by giving analytical expressions of Extreme Value distribution parameters for maps that have an absolutely continuous invariant measure. We compare these analytical results with numerical experiments in which we study the convergence to limiting distributions using the so called block-maxima approach, pointing out in which cases we obtain robust estimation of parameters. In regular maps for which mixing properties do not hold, we show that the fitting procedure to the classical Extreme Value Distribution fails, as expected. However, we obtain an empirical distribution that can be explained starting from a different observable function for which Nicolis et al. (Phys. Rev. Lett. 97(21): 210602, 2006) have found analytical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of “distance to instability” of a system matrix is generalized to system pencils which arise in descriptor (semistate) systems. Difficulties arise in the case of singular systems, because the pencil can be made unstable by an infinitesimal perturbation. It is necessary to measure the distance subject to restricted, or structured, perturbations. In this paper a suitable measure for the stability radius of a generalized state-space system is defined, and a computable expression for the distance to instability is derived for regular pencils of index less than or equal to one. For systems which are strongly controllable it is shown that this measure is related to the sensitivity of the poles of the system over all feedback matrices assigning the poles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robustness in multi-variable control system design requires that the solution to the design problem be insensitive to perturbations in the system data. In this paper we discuss measures of robustness for generalized state-space, or descriptor, systems and describe algorithmic techniques for optimizing robustness for various applications.