917 resultados para general circulation model (GCM) ground hydrolosic model (GHM) heat and vapor exchange between land and atmosphere
Resumo:
Pilot and industrial scale dilute acid pretreatment data can be difficult to obtain due to the significant infrastructure investment required. Consequently, models of dilute acid pretreatment by necessity use laboratory scale data to determine kinetic parameters and make predictions about optimal pretreatment conditions at larger scales. In order for these recommendations to be meaningful, the ability of laboratory scale models to predict pilot and industrial scale yields must be investigated. A mathematical model of the dilute acid pretreatment of sugarcane bagasse has previously been developed by the authors. This model was able to successfully reproduce the experimental yields of xylose and short chain xylooligomers obtained at the laboratory scale. In this paper, the ability of the model to reproduce pilot scale yield and composition data is examined. It was found that in general the model over predicted the pilot scale reactor yields by a significant margin. Models that appear very promising at the laboratory scale may have limitations when predicting yields on a pilot or industrial scale. It is difficult to comment whether there are any consistent trends in optimal operating conditions between reactor scale and laboratory scale hydrolysis due to the limited reactor datasets available. Further investigation is needed to determine whether the model has some efficacy when the kinetic parameters are re-evaluated by parameter fitting to reactor scale data, however, this requires the compilation of larger datasets. Alternatively, laboratory scale mathematical models may have enhanced utility for predicting larger scale reactor performance if bulk mass transport and fluid flow considerations are incorporated into the fibre scale equations. This work reinforces the need for appropriate attention to be paid to pilot scale experimental development when moving from laboratory to pilot and industrial scales for new technologies.
Resumo:
This article contributes an original integrated model of an open-pit coal mine for supporting energy-efficient decisions. Mixed integer linear programming is used to formulate a general integrated model of the operational energy consumption of four common open-pit coal mining subsystems: excavation and haulage, stockpiles, processing plants and belt conveyors. Mines are represented as connected instances of the four subsystems, in a flow sheet manner, which are then fitted to data provided by the mine operators. Solving the integrated model ensures the subsystems’ operations are synchronised and whole-of-mine energy efficiency is encouraged. An investigation on a case study of an open-pit coal mine is conducted to validate the proposed methodology. Opportunities are presented for using the model to aid energy-efficient decision-making at various levels of a mine, and future work to improve the approach is described.
Resumo:
Analytical solutions of partial differential equation (PDE) models describing reactive transport phenomena in saturated porous media are often used as screening tools to provide insight into contaminant fate and transport processes. While many practical modelling scenarios involve spatially variable coefficients, such as spatially variable flow velocity, v(x), or spatially variable decay rate, k(x), most analytical models deal with constant coefficients. Here we present a framework for constructing exact solutions of PDE models of reactive transport. Our approach is relevant for advection-dominant problems, and is based on a regular perturbation technique. We present a description of the solution technique for a range of one-dimensional scenarios involving constant and variable coefficients, and we show that the solutions compare well with numerical approximations. Our general approach applies to a range of initial conditions and various forms of v(x) and k(x). Instead of simply documenting specific solutions for particular cases, we present a symbolic worksheet, as supplementary material, which enables the solution to be evaluated for different choices of the initial condition, v(x) and k(x). We also discuss how the technique generalizes to apply to models of coupled multispecies reactive transport as well as higher dimensional problems.
Resumo:
Membrane filtration technology has been proven to be a technically sound process to improve the quality of clarified cane juice and subsequently to increase the productivity of crystallisation and the quality of sugar production. However, commercial applications have been hindered because the benefits to crystallisation and sugar quality have not outweighed the increased processing costs associated with membrane applications. An 'Integrated Sugar Production Process (ISPP) Concept Model' is proposed to recover more value from the non-sucrose streams generated by membrane processing. Pilot scale membrane fractionation trials confirmed the technical feasibility of separating high-molecular weight, antioxidant and reducing sugar fractions from cane juice in forms suitable for value recovery. It was also found that up to 40% of potassium salts from the juice can be removed by membrane application while removing the similar amount of water with potential energy saving in subsequent evaporation. Application of ISPP would allow sugar industry to co-produce multiple products and high quality mill sugar while eliminating energy intensive refining processes.
Resumo:
Exact expressions for the response functions of kinetic Ising models are reported. These results valid for magnetisation in one dimension are based on a general formalism that yield the earlier results of Glauber and Kimball as special cases.
Resumo:
Downscaling to station-scale hydrologic variables from large-scale atmospheric variables simulated by general circulation models (GCMs) is usually necessary to assess the hydrologic impact of climate change. This work presents CRF-downscaling, a new probabilistic downscaling method that represents the daily precipitation sequence as a conditional random field (CRF). The conditional distribution of the precipitation sequence at a site, given the daily atmospheric (large-scale) variable sequence, is modeled as a linear chain CRF. CRFs do not make assumptions on independence of observations, which gives them flexibility in using high-dimensional feature vectors. Maximum likelihood parameter estimation for the model is performed using limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization. Maximum a posteriori estimation is used to determine the most likely precipitation sequence for a given set of atmospheric input variables using the Viterbi algorithm. Direct classification of dry/wet days as well as precipitation amount is achieved within a single modeling framework. The model is used to project the future cumulative distribution function of precipitation. Uncertainty in precipitation prediction is addressed through a modified Viterbi algorithm that predicts the n most likely sequences. The model is applied for downscaling monsoon (June-September) daily precipitation at eight sites in the Mahanadi basin in Orissa, India, using the MIROC3.2 medium-resolution GCM. The predicted distributions at all sites show an increase in the number of wet days, and also an increase in wet day precipitation amounts. A comparison of current and future predicted probability density functions for daily precipitation shows a change in shape of the density function with decreasing probability of lower precipitation and increasing probability of higher precipitation.
Resumo:
Internationally there is a growing interest in the mental wellbeing of young people. However, it is unclear whether mental wellbeing is best conceptualized as a general wellbeing factor or a multidimensional construct. This paper investigated whether mental wellbeing, measured by the Mental Health Continuum-Short Form (MHC-SF), is best represented by: (1) a single-factor general model; (2) a three-factor multidimensional model or (3) a combination of both (bifactor model). 2,220 young Australians aged between 16 and 25 years completed an online survey including the MHC-SF and a range of other wellbeing and mental ill-health measures. Exploratory factor analysis supported a bifactor solution, comprised of a general wellbeing factor, and specific group factors of psychological, social and emotional wellbeing. Confirmatory factor analysis indicated that the bifactor model had a better fit than competing single and three-factor models. The MHC-SF total score was more strongly associated with other wellbeing and mental ill-health measures than the social, emotional or psychological subscale scores. Findings indicate that the mental wellbeing of young people is best conceptualized as an overarching latent construct (general wellbeing) to which emotional, social and psychological domains contribute. The MHC-SF total score is a valid and reliable measure of this general wellbeing factor.
Resumo:
This paper presents a complete asymptotic analysis of a simple model for the evolution of the nocturnal temperature distribution on bare soil in calm clear conditions. The model is based on a simplified flux emissivity scheme that provides a nondiffusive local approximation for estimating longwave radiative cooling near ground. An examination of the various parameters involved shows that the ratio of the characteristic radiative to the diffusive timescale in the problem is of order 10(-3), and can therefore be treated as a small parameter (mu). Certain other plausible approximations and linearization lead to a new equation whose asymptotic solution as mu --> 0 can be written in closed form. Four regimes, consishttp://eprints.iisc.ernet.in/cgi/users/home?screen=EPrint::Edit&eprintid=27192&stage=core#tting of a transient at nominal sunset, a radiative-diffusive boundary ('Ramdas') layer on ground, a boundary layer transient and a radiative outer solution, are identified. The asymptotic solution reproduces all the qualitative features of more exact numerical simulations, including the occurrence of a lifted temperature minimum and its evolution during night, ranging from continuing growth to relatively sudden collapse of the Ramdas layer.
Resumo:
We present a simplified yet analytical formulation of the carrier backscattering coefficient for zig-zag semiconducting single walled carbon nanotubes under diffusive regime. The electron-phonon scattering rate for longitudinal acoustic, optical, and zone-boundary phonon emissions for both inter- and intrasubband transition rates have been derived using Kane's nonparabolic energy subband model.The expressions for the mean free path and diffusive resistance have been formulated incorporating the aforementioned phonon scattering. Appropriate overlap function in Fermi's golden rule has been incorporated for a more general approach. The effect of energy subbands on low and high bias zones for the onset of longitudinal acoustic, optical, and zone-boundary phonon emissions and absorption have been analytically addressed. 90% transmission of the carriers from the source to the drain at 400 K for a 5 mu m long nanotube at 105 V m(-1) has been exhibited. The analytical results are in good agreement with the available experimental data. (c) 2010 American Institute of Physics.
Resumo:
Regional impacts of climate change remain subject to large uncertainties accumulating from various sources, including those due to choice of general circulation models (GCMs), scenarios, and downscaling methods. Objective constraints to reduce the uncertainty in regional predictions have proven elusive. In most studies to date the nature of the downscaling relationship (DSR) used for such regional predictions has been assumed to remain unchanged in a future climate. However,studies have shown that climate change may manifest in terms of changes in frequencies of occurrence of the leading modes of variability, and hence, stationarity of DSRs is not really a valid assumption in regional climate impact assessment. This work presents an uncertainty modeling framework where, in addition to GCM and scenario uncertainty, uncertainty in the nature of the DSR is explored by linking downscaling with changes in frequencies of such modes of natural variability. Future projections of the regional hydrologic variable obtained by training a conditional random field (CRF) model on each natural cluster are combined using the weighted Dempster-Shafer (D-S) theory of evidence combination. Each projection is weighted with the future projected frequency of occurrence of that cluster (''cluster linking'') and scaled by the GCM performance with respect to the associated cluster for the present period (''frequency scaling''). The D-S theory was chosen for its ability to express beliefs in some hypotheses, describe uncertainty and ignorance in the system, and give a quantitative measurement of belief and plausibility in results. The methodology is tested for predicting monsoon streamflow of the Mahanadi River at Hirakud Reservoir in Orissa, India. The results show an increasing probability of extreme, severe, and moderate droughts due to limate change. Significantly improved agreement between GCM predictions owing to cluster linking and frequency scaling is seen, suggesting that by linking regional impacts to natural regime frequencies, uncertainty in regional predictions can be realistically quantified. Additionally, by using a measure of GCM performance in simulating natural regimes, this uncertainty can be effectively constrained.
Resumo:
Representation and quantification of uncertainty in climate change impact studies are a difficult task. Several sources of uncertainty arise in studies of hydrologic impacts of climate change, such as those due to choice of general circulation models (GCMs), scenarios and downscaling methods. Recently, much work has focused on uncertainty quantification and modeling in regional climate change impacts. In this paper, an uncertainty modeling framework is evaluated, which uses a generalized uncertainty measure to combine GCM, scenario and downscaling uncertainties. The Dempster-Shafer (D-S) evidence theory is used for representing and combining uncertainty from various sources. A significant advantage of the D-S framework over the traditional probabilistic approach is that it allows for the allocation of a probability mass to sets or intervals, and can hence handle both aleatory or stochastic uncertainty, and epistemic or subjective uncertainty. This paper shows how the D-S theory can be used to represent beliefs in some hypotheses such as hydrologic drought or wet conditions, describe uncertainty and ignorance in the system, and give a quantitative measurement of belief and plausibility in results. The D-S approach has been used in this work for information synthesis using various evidence combination rules having different conflict modeling approaches. A case study is presented for hydrologic drought prediction using downscaled streamflow in the Mahanadi River at Hirakud in Orissa, India. Projections of n most likely monsoon streamflow sequences are obtained from a conditional random field (CRF) downscaling model, using an ensemble of three GCMs for three scenarios, which are converted to monsoon standardized streamflow index (SSFI-4) series. This range is used to specify the basic probability assignment (bpa) for a Dempster-Shafer structure, which represents uncertainty associated with each of the SSFI-4 classifications. These uncertainties are then combined across GCMs and scenarios using various evidence combination rules given by the D-S theory. A Bayesian approach is also presented for this case study, which models the uncertainty in projected frequencies of SSFI-4 classifications by deriving a posterior distribution for the frequency of each classification, using an ensemble of GCMs and scenarios. Results from the D-S and Bayesian approaches are compared, and relative merits of each approach are discussed. Both approaches show an increasing probability of extreme, severe and moderate droughts and decreasing probability of normal and wet conditions in Orissa as a result of climate change. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Many downscaling techniques have been developed in the past few years for projection of station-scale hydrological variables from large-scale atmospheric variables simulated by general circulation models (GCMs) to assess the hydrological impacts of climate change. This article compares the performances of three downscaling methods, viz. conditional random field (CRF), K-nearest neighbour (KNN) and support vector machine (SVM) methods in downscaling precipitation in the Punjab region of India, belonging to the monsoon regime. The CRF model is a recently developed method for downscaling hydrological variables in a probabilistic framework, while the SVM model is a popular machine learning tool useful in terms of its ability to generalize and capture nonlinear relationships between predictors and predictand. The KNN model is an analogue-type method that queries days similar to a given feature vector from the training data and classifies future days by random sampling from a weighted set of K closest training examples. The models are applied for downscaling monsoon (June to September) daily precipitation at six locations in Punjab. Model performances with respect to reproduction of various statistics such as dry and wet spell length distributions, daily rainfall distribution, and intersite correlations are examined. It is found that the CRF and KNN models perform slightly better than the SVM model in reproducing most daily rainfall statistics. These models are then used to project future precipitation at the six locations. Output from the Canadian global climate model (CGCM3) GCM for three scenarios, viz. A1B, A2, and B1 is used for projection of future precipitation. The projections show a change in probability density functions of daily rainfall amount and changes in the wet and dry spell distributions of daily precipitation. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
A one-dimensional coupled multi-physics based model has been developed to accurately compute the effects of electrostatic, mechanical, and thermal field interactions on the electronic energy band structure in group III-nitrides thin film heterostructures. Earlier models reported in published literature assumes electro-mechanical field with uniform temperature thus neglecting self-heating. Also, the effects of diffused interface on the energy band structure were not studied. We include these effects in a self-consistent manner wherein the transport equation is introduced along with the electro-mechanical models, and the lattice structural variation as observed in experiments are introduced at the interface. Due to these effects, the electrostatic potential distribution in the heterostructure is altered. The electron and hole ground state energies decrease by 5% and 9%, respectively, at a relative temperature of 700 K, when compared with the results obtained from the previously reported electro-mechanical model assuming constant and uniform temperature distribution. A diffused interface decreases the ground state energy of electrons and holes by about 11% and 9%, respectively, at a relative temperature of 700 K when compared with the predictions based on uniform temperature based electro-mechanical model. (C) 2013 AIP Publishing LLC.
Resumo:
We study the Majorana modes, both equilibrium and Floquet, which can appear at the edges of the Kitaev model on the honeycomb lattice. We first present the analytical solutions known for the equilibrium Majorana edge modes for both zigzag and armchair edges of a semi-infinite Kitaev model and chart the parameter regimes in which they appear. We then examine how edge modes can be generated if the Kitaev coupling on the bonds perpendicular to the edge is varied periodically in time as periodic delta-function kicks. We derive a general condition for the appearance and disappearance of the Floquet edge modes as a function of the drive frequency for a generic d-dimensional integrable system. We confirm this general condition for the Kitaev model with a finite width by mapping it to a one-dimensional model. Our numerical and analytical study of this problem shows that Floquet Majorana modes can appear on some edges in the kicked system even when the corresponding equilibrium Hamiltonian has no Majorana mode solutions on those edges. We support our analytical studies by numerics for a finite sized system which show that periodic kicks can generate modes at the edges and the corners of the lattice.
Resumo:
Several statistical downscaling models have been developed in the past couple of decades to assess the hydrologic impacts of climate change by projecting the station-scale hydrological variables from large-scale atmospheric variables simulated by general circulation models (GCMs). This paper presents and compares different statistical downscaling models that use multiple linear regression (MLR), positive coefficient regression (PCR), stepwise regression (SR), and support vector machine (SVM) techniques for estimating monthly rainfall amounts in the state of Florida. Mean sea level pressure, air temperature, geopotential height, specific humidity, U wind, and V wind are used as the explanatory variables/predictors in the downscaling models. Data for these variables are obtained from the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis dataset and the Canadian Centre for Climate Modelling and Analysis (CCCma) Coupled Global Climate Model, version 3 (CGCM3) GCM simulations. The principal component analysis (PCA) and fuzzy c-means clustering method (FCM) are used as part of downscaling model to reduce the dimensionality of the dataset and identify the clusters in the data, respectively. Evaluation of the performances of the models using different error and statistical measures indicates that the SVM-based model performed better than all the other models in reproducing most monthly rainfall statistics at 18 sites. Output from the third-generation CGCM3 GCM for the A1B scenario was used for future projections. For the projection period 2001-10, MLR was used to relate variables at the GCM and NCEP grid scales. Use of MLR in linking the predictor variables at the GCM and NCEP grid scales yielded better reproduction of monthly rainfall statistics at most of the stations (12 out of 18) compared to those by spatial interpolation technique used in earlier studies.