995 resultados para gas diffusion electrodes
Resumo:
The biological uptake of plutonium (Pu) in aquatic ecosystems is of particular concern since it is an alpha-particle emitter with long half-life which can potentially contribute to the exposure of biota and humans. The diffusive gradients in thin films technique is introduced here for in-situ measurements of Pu bioavailability and speciation. A diffusion cell constructed for laboratory experiments with Pu and the newly developed protocol make it possible to simulate the environmental behavior of Pu in model solutions of various chemical compositions. Adjustment of the oxidation states to Pu(IV) and Pu(V) described in this protocol is essential in order to investigate the complex redox chemistry of plutonium in the environment. The calibration of this technique and the results obtained in the laboratory experiments enable to develop a specific DGT device for in-situ Pu measurements in freshwaters. Accelerator-based mass-spectrometry measurements of Pu accumulated by DGTs in a karst spring allowed determining the bioavailability of Pu in a mineral freshwater environment. Application of this protocol for Pu measurements using DGT devices has a large potential to improve our understanding of the speciation and the biological transfer of Pu in aquatic ecosystems.
Resumo:
A collection of spherical obstacles in the unit ball in Euclidean space is said to be avoidable for Brownian motion if there is a positive probability that Brownian motion diffusing from some point in the ball will avoid all the obstacles and reach the boundary of the ball. The centres of the spherical obstacles are generated according to a Poisson point process while the radius of an obstacle is a deterministic function. If avoidable configurations are generated with positive probability, Lundh calls this percolation diffusion. An integral condition for percolation diffusion is derived in terms of the intensity of the point process and the function that determines the radii of the obstacles.
Resumo:
Vaccination aims at generating memory immune responses able to protect individuals against pathogenic challenges over long periods of time. Subunit vaccine formulations based on safe, but poorly immunogenic, antigenic entities must be combined with adjuvant molecules to make them efficient against infections. We have previously shown that gas-filled microbubbles (MB) are potent antigen-delivery systems. This study compares the ability of various ovalbumin-associated MB (OVA-MB) formulations to induce antigen-specific memory immune responses and evaluates long-term protection toward bacterial infections. When initially testing dendritic cells reactivity to MB constituents, palmitic acid exhibited the highest degree of activation. Subcutaneous immunization of naïve wild-type mice with the OVA-MB formulation comprising the highest palmitic acid content and devoid of PEG2000 was found to trigger the more pronounced Th1-type response, as reflected by robust IFN-γ and IL-2 production. Both T cell and antibody responses persisted for at least 6 months after immunization. At that time, systemic infection with OVA-expressing Listeria monocytgenes was performed. Partial protection of vaccinated mice was demonstrated by reduction of the bacterial load in both the spleen and liver. We conclude that antigen-bound MB exhibit promising properties as a vaccine candidate ensuring prolonged maintenance of protective immunity.
Resumo:
We consider the problem of multiple correlated sparse signals reconstruction and propose a new implementation of structured sparsity through a reweighting scheme. We present a particular application for diffusion Magnetic Resonance Imaging data and show how this procedure can be used for fibre orientation reconstruction in the white matter of the brain. In that framework, our structured sparsity prior can be used to exploit the fundamental coherence between fibre directions in neighbour voxels. Our method approaches the ℓ0 minimisation through a reweighted ℓ1-minimisation scheme. The weights are here defined in such a way to promote correlated sparsity between neighbour signals.
Resumo:
In diffusion MRI, traditional tractography algorithms do not recover truly quantitative tractograms and the structural connectivity has to be estimated indirectly by counting the number of fiber tracts or averaging scalar maps along them. Recently, global and efficient methods have emerged to estimate more quantitative tractograms by combining tractography with local models for the diffusion signal, like the Convex Optimization Modeling for Microstructure Informed Tractography (COMMIT) framework. In this abstract, we show the importance of using both (i) proper multi-compartment diffusion models and (ii) adequate multi-shell acquisitions, in order to evaluate the accuracy and the biological plausibility of the tractograms.
Resumo:
Connectivity analysis on diffusion MRI data of the whole- brain suffers from distortions caused by the standard echo- planar imaging acquisition strategies. These images show characteristic geometrical deformations and signal destruction that are an important drawback limiting the success of tractography algorithms. Several retrospective correction techniques are readily available. In this work, we use a digital phantom designed for the evaluation of connectivity pipelines. We subject the phantom to a âeurooetheoretically correctâeuro and plausible deformation that resembles the artifact under investigation. We correct data back, with three standard methodologies (namely fieldmap-based, reversed encoding-based, and registration- based). Finally, we rank the methods based on their geometrical accuracy, the dropout compensation, and their impact on the resulting connectivity matrices.
Resumo:
Focal epilepsy is increasingly recognized as the result of an altered brain network, both on the structural and functional levels and the characterization of these widespread brain alterations is crucial for our understanding of the clinical manifestation of seizure and cognitive deficits as well as for the management of candidates to epilepsy surgery. Tractography based on Diffusion Tensor Imaging allows non-invasive mapping of white matter tracts in vivo. Recently, diffusion spectrum imaging (DSI), based on an increased number of diffusion directions and intensities, has improved the sensitivity of tractography, notably with respect to the problem of fiber crossing and recent developments allow acquisition times compatible with clinical application. We used DSI and parcellation of the gray matter in regions of interest to build whole-brain connectivity matrices describing the mutual connections between cortical and subcortical regions in patients with focal epilepsy and healthy controls. In addition, the high angular and radial resolution of DSI allowed us to evaluate also some of the biophysical compartment models, to better understand the cause of the changes in diffusion anisotropy. Global connectivity, hub architecture and regional connectivity patterns were altered in TLE patients and showed different characteristics in RTLE vs LTLE with stronger abnormalities in RTLE. The microstructural analysis suggested that disturbed axonal density contributed more than fiber orientation to the connectivity changes affecting the temporal lobes whereas fiber orientation changes were more involved in extratemporal lobe changes. Our study provides further structural evidence that RTLE and LTLE are not symmetrical entities and DSI-based imaging could help investigate the microstructural correlate of these imaging abnormalities.
Resumo:
The authors report a case where a quantitative assessment of the apparent diffusion coefficient (ADC) of liver metastasis in a patient undergoing chemotherapy has shown to be an effective early marker for predicting therapeutic response, anticipating changes in tumor size. A lesion with lower initial ADC value and early increase in such value in the course of the treatment tends to present a better therapeutic response.
Resumo:
Once a country allergic to any type of preferential treatment or quota measure for women, France has become a country that applies gender quotas to regulate women's presence and representation in politics, the business sector, public bodies, public administration, and even some civil society organizations. While research has concentrated on the adoption of electoral gender quotas in many countries and their international diffusion, few studies focus on explaining the successful diffusion of gender quotas from politics to other domains in the same country. This paper proposes to fill this gap by studying the particularly puzzling case of a country that at one point strongly opposed the adoption of gender quotas in politics, but, in less than a decade, transformed into one of the few countries applying gender quotas across several policy domains. This paper argues that the legal entrenchment of the parity principle, the institutionalization of parity in several successive women's policy agencies, and key players in these newly created agencies are mainly responsible for this unexpected development. The diffusion of gender quotas in France thus offers an illuminating example of under which conditions women's policy agencies can act autonomously to diffuse and impose a new tool for gender equality
Resumo:
Food allergies are believed to be on the rise and currently management relies on the avoidance of the food. Hen's egg allergy is after cow's milk allergy the most common food allergy; eggs are used in many food products and thus difficult to avoid. A technological process using a combination of enzymatic hydrolysis and heat treatment was designed to produce modified hen's egg with reduced allergenic potential. Biochemical (SDS-PAGE, Size exclusion chromatography and LC-MS/MS) and immunological (ELISA, immunoblot, RBL-assays, animal model) analysis showed a clear decrease in intact proteins as well as a strong decrease of allergenicity. In a clinical study, 22 of the 24 patients with a confirmed egg allergy who underwent a double blind food challenge with the hydrolysed egg remained completely free of symptoms. Hydrolysed egg products may be beneficial as low allergenic foods for egg allergic patients to extent their diet. This article is protected by copyright. All rights reserved.
Resumo:
A review is given about the most relevant advances on the analytical applications of conducting polymers in potentiometric sensors. These organic polymers represent a new class of materials with conducting properties due to its doping by ions. Several polymers already were synthesized such as polypyrrole, polyaniline, polythiophene, among others. Particular attention is devoted to the main advantages supplied by ion selective electrodes and gas sensors using conducting polymers, as well as the incorporation of bioactive elements in these polymers for the construction of biosensors. The correlation between structure, stability and ability to ion exchange of some conducting polymers applied as potentiometric transducers, is discussed.