858 resultados para freshwater ecosystem
Resumo:
"Doc. no. 81/40."
Resumo:
"November 2004" -- t.p.
Resumo:
Trans. Roy. Soc. Edinburgh. XIII. 169-282. pl. 5, 5bis - 12. 1836.
Resumo:
Bibliography: p. 35-36.
Resumo:
"June 1996."
Resumo:
"9/96"--P. [2] of cover.
Resumo:
"Updated and expanded by Stanton J. Kleinert"--Pref.
Resumo:
"September 1998."
Resumo:
Mode of access: Internet.
Resumo:
"Sponsors: The Wildlife Society's Working Group on Sustainable Use of Ecosystem Resources ... [et al.]."
Resumo:
Title Varies: 1925-37 Report on Salmon and Freshwater Fisheries (Varies Slightly)
Resumo:
Permafrost dynamics play an important role in high-latitude peatland carbon balance and are key to understanding the future response of soil carbon stocks. Permafrost aggradation can control the magnitude of the carbon feedback in peatlands through effects on peat properties. We compiled peatland plant macrofossil records for the northern permafrost zone (515 cores from 280 sites) and classified samples by vegetation type and environmental class (fen, bog, tundra and boreal permafrost, thawed permafrost). We examined differences in peat properties (bulk density, carbon (C), nitrogen (N) and organic matter content, C/N ratio) and C accumulation rates among vegetation types and environmental classes.
Resumo:
Tracking the movement of migratory freshwater fish is essential to those invested in rebuilding declining fish populations. Using strontium isotopic signatures to match calcified fish tissues to streams where fish spawn is a useful method of tracking migratory fish where physical tracking methods such as radio, acoustic, or external tags, have proven unsuccessful. In this study, we develop tools to practice this method of tracking fish in Lake Roosevelt and its upstream tributaries in Washington State by analyzing the elemental concentrations and 87Sr/86Sr ratios of water samples, and mussel shell samples. This study evaluates whether mussel shells act as an appropriate proxy for water chemistry by comparing the 87Sr/86Sr isotope ratios of water samples to the 87Sr/86Sr isotope ratios of mussel shells sampled from the same, or nearby, locations. We compare concentrations of Ba, Ca, Cd, Cu, Fe, Mg, Pb, Sr, and U in the water and mussel shell samples to determine the feasibility of using mussel shells as a proxy for water chemistry. If it is determined that the concentrations of these elements in mussel shells reflect that of the surrounding water composition, the elemental composition of mussel shells can be compared to that of calcified tissues in fish, such as otoliths, to infer the location of the natal stream. We report analyses of water and mussel shell samples collected from Lake Roosevelt, Sanpoil River, Spokane River, Colville River, Kettle River, Pend Oreille River, Kootenay River, and Columbia River in Washington State. Each of these rivers is a tributary to Lake Roosevelt, and each flows through different geologic units. We hypothesize that the differences in the rock units of each stream’s watershed are reflected in the elemental concentrations and strontium isotopic ratios of water in each stream and in the lake. We also hypothesize that the composition of the mussel shells will match the composition of the water samples, therefore allowing us to use the mussel shells as a proxy for local water chemistry. Additionally, we hypothesize that the composition of the mussel shells will vary by location, and that we will be able to then infer where a fish is from by matching the composition of the fish in question to the mussels we have analyzed. We found that 87Sr/86Sr values for water and mussel hinge samples collected from tributaries east of Lake Roosevelt are significantly higher than the 87Sr/86Sr values for samples collected from tributaries west of Lake Roosevelt with averages of 0.7235 and 0.7089, respectively. The average 87Sr/86Sr ratios for water and mussel hinge samples collected within Lake Roosevelt is 0.7158, which is between the averages for samples collected east and west of the lake. Generally, older rocks are exposed on the east side of the lake, and younger rocks on the west side of the lake, so our 87Sr/86Sr values support the hypothesis that geologic units are a primary control on water chemistry, and that tributary compositions mix to form an average weighed by flow in Lake Roosevelt. The 87Sr/86Sr values for water and mussel shell samples collected from the same locations have a strong, positive linear correlation, suggesting that mussel shell 87Sr/86Sr ratios reflect the 87Sr/86Sr ratios of the ambient water. With these data, we can distinguish between different streams and the lake, but cannot distinguish between samples from within the same stream or within Lake Roosevelt. The Sr:Ca and Fe:Ca ratios of water samples show positive correlations with mussel shell compositions, with R2 values of 0.82 and 0.52, respectively. Ratios of Mg, Ba, Cu, Cd, Pb, and U to Ca showed little or no positive correlation between water and mussel shell samples. The elemental concentration data collected for this study do not demonstrate whether a correlation between elemental ratios in water samples and elemental ratios in mussel shell samples collected from the same location exists. Positive Sr:Ca and Fe:Ca correlations for water versus mussel shell samples indicate that perhaps for some elements, the composition of mussel shells are representative of the composition of ambient water. Using elemental concentration ratios to complement 87Sr/86Sr isotopic data may enhance our ability to identify correlations between water and mussel shell samples, and ultimately between mussel shell and otolith samples. The hinge part of a mussel shell may be used as a proxy for local water composition because the mussel shell composition reflects that of the local ambient water. The hinge of the mussel has the same composition as the whole mussel shell. We measured variation of 87Sr/86Sr ratios in the water among different streams and Lake Roosevelt. The 87Sr/86Sr values for samples collected in tributaries east of Lake Roosevelt, which erode older rocks, are higher for mussel shell and water samples than the average 87Sr/86Sr values for mussel shell and water samples collected in tributaries west of Lake Roosevelt, which flow through younger rocks.
Resumo:
Freshwater Bay (FWB), Washington did not undergo significant erosion of its shoreline after the construction of the Elwha and Glines Canyon Dams, unlike the shoreline east of Angeles Point (the Elwha River’s lobate delta). In this paper I compare the wave energy density in the western and eastern ends of the Strait of Juan de Fuca with the wave energy density at the Elwha River delta. This indicates seasonal high- and low-energy regimes in the energy density data. I group multi-year surveys of four cross-shore transects in FWB along this seasonal divide and search for seasonal trends in profile on the foreshore. After documenting changes in elevation at specific datums on the foreshore, I compare digital images of one datum to determine the particle sizes that are transported during deposition and scour events on this section of the FWB foreshore. Repeat surveys of four cross-shore transects over a five-year period indicate a highly mobile slope break between the upper foreshore and the low-tide delta. Post-2011, profiles in eastern FWB record deposition in the landward portion of the low-tide terrace and also in the upper intertidal. Western FWB experiences transient deposition on the low-tide terrace and high intra-annual variability in beach profile. Profile elevation at the slope break in western FWB can vary 0.5 m in the course of weeks. Changes in surface sediment that range from sand to cobble are co-incident with these changes in elevation. High sediment mobility and profile variation are inconsistent with shoreline stability and decreased sediment from the presumed source on the Elwha River delta.
Resumo:
Estuaries provide crucial ecosystem functions and contain significant socio-economic value. Within Washington State, estuaries supply rearing habitat for juvenile salmon during their transition period from freshwater to open sea. In order to properly manage wetland resources and restore salmon habitat, the mechanisms through which estuaries evolve and adapt to pressures from climate change, most notably eustatic sea level rise, must be understood. Estuaries maintain elevation relative to sea level rise through vertical accretion of sediment. This report investigates the processes that contribute to local surface elevation change in the Snohomish Estuary, conveys preliminary surface elevation change results from RTK GPS monitoring, and describes how surface elevation change will be monitored with a network of RSET-MH’s. Part of the tidal wetlands within the Snohomish River Estuary were converted for agricultural and industrial purposes in the 1800’s, which resulted in subsidence of organic soils and loss of habitat. The Tulalip Tribes, the National Oceanic and Atmospheric Administration (NOAA), Northwest Indian Fisheries Commission (NWIFC), and the Environmental Protection Agency (EPA) are conducting a large-scale restoration project to improve ecosystem health and restore juvenile salmon habitat. A study by Crooks et al. (2014) used 210Pb and carbon densities within sediment cores to estimate wetland re-building capacities, sediment accretion rates, and carbon sequestration potential within the Snohomish Estuary. This report uses the aforementioned study in combination with research on crustal movement, tidal patterns, sediment supply, and sea level rise predictions in the Puget Sound to project how surface elevation will change in the Snohomish Estuary with respect to sea level rise. Anthropogenic modification of the floodplain has reduced the quantity of vegetation and functional connectivity within the Snohomish Estuary. There have been losses up to 99% in vegetation coverage from historic extents within the estuary in both freshwater and mesohaline environments. Hydrographic monitoring conducted by NOAA and the Tulalip Tribe shows that 85% of the historic wetland area is not connected to the main stem of the Snohomish (Jason Hall 2014, unpublished data, NOAA). As vegetation colonization and functional connectivity of the floodplains of the Snohomish estuary is re-established through passive and active restoration, sediment transport and accretion is expected to increase. Under the Intergovernmental Panel on Climate Change (IPCC) “medium- probability” scenario sea level is projected to rise at a rate of 4.28 mm/year in the Puget Sound. Sea level rise in the Snohomish Estuary will be exacerbated from crustal deformation from subsidence and post-glacial rebound, which are measured to be -1.4 mm/year and -0.02 mm/year, respectively. Sediment accretion rates calculated by Crooks et al. (2014) and RTK GPS monitoring of surface elevation change of the Marysville Mitigation site from 2011-2014 measured vertical accretion rates that range from -48-19 mm/year and have high spatial variability. Sediment supply is estimated at 490 thousand tons/year, which may be an under-estimate because of the exclusion of tidal transport in this value. The higher rates of sediment accretion measured in the Snohomish Estuary suggest that the Snohomish will likely match or exceed the pace of sea level rise under “medium-probability” projections. The network of RSET-MH instruments will track surface elevation change within the estuary, and provide a more robust dataset on rates of surface elevation change to quantify how vertical accretion and subsidence are contributing to surface elevation change on a landscape scale.