973 resultados para fracture repair
Resumo:
Purpose: To examine whether the levels of micronuclei induction, as a marker for genomic instability in the progeny of X-irradiated cells, correlates with DNA repair function.
Materials and methods: Two repair deficient cell lines (X-ray repair cross-complementing 1 [XRCC1] deficient cell line [EM9] and X-ray repair cross complementing 5 [XRCC5; Ku80] deficient X-ray sensitive Chinese hamster ovary [CHO] cell line [xrs5]) were used in addition to wild-type CHO cells. These cells were irradiated with low doses of X-rays (up to 1 Gy). Seven days after irradiation, micronuclei formed in binucleated cells were counted. To assess the contribution of the bystander effect micronuclei induction was measured in progeny of non-irradiated cells co-cultured with cells that had been irradiated with 1Gy.
Results: The delayed induction of micronuclei in 1 Gy-irradiated cells was observed in normal CHO and EM9 but not in xrs5. In the clone analysis, progenies of xrs5 under bystander conditions showed significantly higher levels of micronuclei, while CHO and EM9 did not.
Conclusion: Genomic instability induced by X-irradiation is associated with DSB (double-strand break) repair, even at low doses. It is also suggested that bystander signals, which lead to genomic instability, may be enhanced when DSB repair is compromised.
Resumo:
Bioprospecting has led to increased interest in potential applications for marine organisms and their by-products. As a rich source of mineralising porous organisms, our seas and oceans could provide new directions for bone tissue engineering particularly in the supply of biomimetic templates that may enhance in vivo and ex vivo bone formation. In this chapter we examine the history of marine organism use in this field; exploring how these organisms could be utilised, given the problems of sustainability, and reviewing the current evidence to support their use for bone repair and regeneration.
Resumo:
Trapezoid fractures are relatively rare upper limb fractures. The case report of a trapezoid stress fracture in the dominant hand of a 22 year old international standard shot-putter is presented.
Resumo:
Because of the requirements for the damage tolerance and fatigue life of commercial aircraft components, the high cycle fatigue (HCF) properties of Ti–5Al–5Mo–5V–1Cr–1Fe titanium alloy forgings are important. The effects of microstructure types of the α+β titanium alloy on fatigue properties need to be understood. In this paper, by analysing the fracture surfaces of the titanium alloy having four types of microstructure, the effects of microstructure are investigated. The differences of initiation areas and crack propagation among different microstructures were studied. It was found that the area of the initiation region decreases in the order of coarse basketweave, fine basketweave, Widmanstätten, and bimodal microstructure.
Resumo:
Features of chip formation can inform the mechanism of a machining process. In this paper, a series of orthogonal cutting experiments were carried out on unidirectional carbon fiber reinforced polymer (UD-CFRP) under cutting speed of 0.5 m/min. The specially designed orthogonal cutting tools and high-speed camera were used in this paper. Two main factors are found to influence the chip morphology, namely the depth of cut (DOC) and the fiber orientation (angle 휃), and the latter of which plays a more dominant role. Based on the investigation of chip formation, a new approach is proposed for predicting fracture toughness of the newly machined surface and the total energy consumption during CFRP orthogonal cutting is introduced as a function of the surface energy of machined surface, the energy consumed to overcome friction, and the energy for chip fracture. The results show that the proportion of energy spent on tool-chip friction is the greatest, and the proportions of energy spent on creating new surface decrease with the increasing of fiber angle.
Resumo:
BACKGROUND: Open AAA repair is associated with ischaemia-reperfusion injury where systemic inflammation and endothelial dysfunction can lead to multiple organ injury including acute lung injury. Oxidative stress plays a role that may be inhibited by ascorbic acid.
METHODS: A double blind, allocation concealed, randomized placebo-controlled trial was performed to test the hypothesis that a single bolus dose (2g) of intra-operative parenteral ascorbic acid would attenuate biomarkers of ischaemia-reperfusion injury in patients undergoing elective open AAA repair.
RESULTS: Thirty one patients completed the study; 18 received placebo and 13 ascorbic acid. Groups were comparable demographically. Open AAA repair caused an increase in urinary Albumin:Creatinine Ratio (ACR) as well as plasma IL-6 and IL-8. There was a decrease in exhaled breath pH and oxygenation. Lipid hydroperoxides were significantly higher in the ascorbic acid group following open AAA repair. There were no other differences between the ascorbic acid or placebo groups up to 4 hours after removal of the aortic clamping.
CONCLUSIONS: Open AAA repair caused an increase in markers of systemic endothelial damage and systemic inflammation. Administration of 2g parenteral ascorbic acid did not attenuate this response and with higher levels of lipid hydroperoxides post-operatively a pro-oxidant effect could not be excluded.
TRIAL REGISTRATION: ISRCTN27369400.
Resumo:
Cells experience damage from exogenous and endogenous sources that endanger genome stability. Several cellular pathways have evolved to detect DNA damage and mediate its repair. Although many proteins have been implicated in these processes, only recent studies have revealed how they operate in the context of high-ordered chromatin structure. Here, we identify the nuclear oncogene SET (I2PP2A) as a modulator of DNA damage response (DDR) and repair in chromatin surrounding double-strand breaks (DSBs). We demonstrate that depletion of SET increases DDR and survival in the presence of radiomimetic drugs, while overexpression of SET impairs DDR and homologous recombination (HR)-mediated DNA repair. SET interacts with the Kruppel-associated box (KRAB)-associated co-repressor KAP1, and its overexpression results in the sustained retention of KAP1 and Heterochromatin protein 1 (HP1) on chromatin. Our results are consistent with a model in which SET-mediated chromatin compaction triggers an inhibition of DNA end resection and HR.
Resumo:
It is widely accepted that silicon-substituted materials enhance bone formation, yet the mechanism by which this occurs is poorly understood. This work investigates the potential of using diatom frustules to answer on fundamental questions surrounding the role of silica in bone healing. Biosilica with frustules 20m were isolated from Cyclotella meneghiniana a unicellular microalgae that was sourced from the Mississippi River, USA. Silanisation chemistry was used to modify the surface of C. meneghiniana with amine (–NH2) and thiol (–SH) terminated silanes. Untreated frustules and both functionalised groups were soaked in culture medium for 24hrs. Following the culture period, frustules were separated from the conditioned medium by centrifugation and both were tested separately in vitro for cytotoxicity using murine-monocyte macrophage (J774) cell line. Cytotoxicity was measured using LDH release to measure damage to cell membrane, MTS to measure cell viability and live-dead staining. The expression and release of pro-inflammatory cytokines (IL-6 and TNF) were measured using ELISA. Our results found that diatom frustules and those functionalised with amino groups showed no cytotoxicity or elevated cytokine release. Diatom frustules functionalised with thiol groups showed higher levels of cytotoxicity. Diatom frustules and those functionalised with amino groups were taken forward to an in vivo mouse toxicity model, whereby the immunological response, organ toxicity and route of metabolism/excretion of silica were investigated. Histological results showed no organ toxicity in any of the groups relative to control. Analysis of blood Si levels suggests that modified frustules are metabolised quicker than functionalised frustules, suggesting that physiochemical attributes influence their biodistribution. Our results show that diatom frustules are non cytotoxic and are promising materials to better understand the role of silica in bone healing.
Resumo:
The DNA mismatch repair (MMR) pathway detects and repairs DNA replication errors. While DNA MMR-proficiency is known to play a key role in the sensitivity to a number of DNA damaging agents, its role in the cytotoxicity of ionizing radiation (IR) is less well characterized. Available literature to date is conflicting regarding the influence of MMR status on radiosensitivity, and this has arisen as a subject of controversy in the field. The aim of this paper is to provide the first comprehensive overview of the experimental data linking MMR proteins and the DNA damage response to IR. A PubMed search was conducted using the key words "DNA mismatch repair" and "ionizing radiation". Relevant articles and their references were reviewed for their association between DNA MMR and IR. Recent data suggest that radiation dose and the type of DNA damage induced may dictate the involvement of the MMR system in the cellular response to IR. In particular, the literature supports a role for the MMR system in DNA damage recognition, cell cycle arrest, DNA repair and apoptosis. In this review we discuss our current understanding of the impact of MMR status on the cellular response to radiation in mammalian cells gained from past and present studies and attempt to provide an explanation for how MMR may determine the response to radiation.