960 resultados para flood basalt
Resumo:
Accurate and efficient thermal-infrared (IR) camera calibration is important for advancing computer vision research within the thermal modality. This paper presents an approach for geometrically calibrating individual and multiple cameras in both the thermal and visible modalities. The proposed technique can be used to correct for lens distortion and to simultaneously reference both visible and thermal-IR cameras to a single coordinate frame. The most popular existing approach for the geometric calibration of thermal cameras uses a printed chessboard heated by a flood lamp and is comparatively inaccurate and difficult to execute. Additionally, software toolkits provided for calibration either are unsuitable for this task or require substantial manual intervention. A new geometric mask with high thermal contrast and not requiring a flood lamp is presented as an alternative calibration pattern. Calibration points on the pattern are then accurately located using a clustering-based algorithm which utilizes the maximally stable extremal region detector. This algorithm is integrated into an automatic end-to-end system for calibrating single or multiple cameras. The evaluation shows that using the proposed mask achieves a mean reprojection error up to 78% lower than that using a heated chessboard. The effectiveness of the approach is further demonstrated by using it to calibrate two multiple-camera multiple-modality setups. Source code and binaries for the developed software are provided on the project Web site.
Resumo:
In natural waterways and estuaries, the understanding of turbulent mixing is critical to the knowledge of sediment transport, stormwater runoff during flood events, and release of nutrient-rich wastewater into ecosystems. In the present study, some field measurements were conducted in a small subtropical estuary with micro-tidal range and semi-diurnal tides during king tide conditions: i. e., the tidal range was the largest for both 2009 and 2010. The turbulent velocity measurements were performed continuously at high-frequency (50Hz) for 60 h. Two acoustic Doppler velocimeters (ADVs) were sampled simultaneously in the middle estuarine zone, and a third ADV was deployed in the upper estuary for 12 h only. The results provided an unique characterisation of the turbulence in both middle and upper estuarine zones under the king tide conditions. The present observations showed some marked differences between king tide and neap tide conditions. During the king tide conditions, the tidal forcing was the dominant water exchange and circulation mechanism in the estuary. In contrast, the long-term oscillations linked with internal and external resonance played a major role in the turbulent mixing during neap tides. The data set showed further that the upper estuarine zone was drastically less affected by the spring tide range: the flow motion remained slow, but the turbulent velocity data were affected by the propagation of a transient front during the very early flood tide motion at the sampling site. © 2012 Springer Science+Business Media B.V.
Resumo:
Background: During December 2010 and January 2011, torrential rainfall in Queensland resulted in the worst flooding in over 50 years. We carried out a community-based survey to assess the health impacts of this flooding in the city of Brisbane. Methods: A community-based survey was conducted in 12 flood-affected electorates using postal questionnaires. A random sample of residents in these areas was drawn from electoral rolls. Questions examined sociodemographic information, the direct impact of flooding on the household, and perceived flood-related health impacts. Outcome variables included perceived flood-related effects on overall and respiratory health, along with mental health outcomes measured by psychosocial distress, reduced sleep quality and probable post-traumatic stress disorder (PTSD). Multivariable logistic regression was used to examine the association between flooding and health outcome variables, adjusted for current health status and socioeconomic factors. Results: 3000 residents were invited to participate in this survey, with 960 responses (32%). People whose households were directly impacted by flooding had a decrease in perceived overall health (OR 5.3, 95% CI: 2.8–10.2), along with increases in psychological distress (OR 1.9, 1.1–3.5), decreased sleep quality (OR 2.3, 1.2–4.4), and probable PTSD (OR 2.3, 1.2–4.5). Residents were also more likely to increase usage of both tobacco (OR 6.3, 2.4–16.8) and alcohol (OR 7.0, 2.2–22.3) after flooding. Conclusions: There were significant impacts of flood events on residents’ health, in particular psychosocial health. Improved support strategies may need to be integrated into existing disaster management programs to reduce flood‐related health impacts.
Resumo:
Floods are the most common type of disaster globally, responsible for almost 53,000 deaths in the last decade alone (23:1 low- versus high-income countries). This review assessed recent epidemiological evidence on the impacts of floods on human health. Published articles (2004–2011) on the quantitative relationship between floods and health were systematically reviewed. 35 relevant epidemiological studies were identified. Health outcomes were categorized into short- and long-term and were found to depend on the flood characteristics and people's vulnerability. It was found that long-term health effects are currently not well understood. Mortality rates were found to increase by up to 50% in the first year post-flood. After floods, it was found there is an increased risk of disease outbreaks such as hepatitis E, gastrointestinal disease and leptospirosis, particularly in areas with poor hygiene and displaced populations. Psychological distress in survivors (prevalence 8.6% to 53% two years post-flood) can also exacerbate their physical illness. There is a need for effective policies to reduce and prevent flood-related morbidity and mortality. Such steps are contingent upon the improved understanding of potential health impacts of floods. Global trends in urbanization, burden of disease, malnutrition and maternal and child health must be better reflected in flood preparedness and mitigation programs.
Resumo:
Background: During December 2010 and January 2011, torrential rainfall in Queensland resulted in the worst flooding in over 50 years. We carried out a community-based survey to assess the health impacts of this flooding in the city of Brisbane. Methods: A community-based survey was conducted in 12 flood-affected electorates using postal questionnaires. A random sample of residents in these areas was drawn from electoral rolls. Questions examined sociodemographic information, the direct impact of flooding on the household, and perceived flood-related health impacts. Outcome variables included perceived flood-related effects on overall and respiratory health, along with mental health outcomes measured by psychosocial distress, reduced sleep quality and probable post-traumatic stress disorder (PTSD). Multivariable logistic regression was used to examine the association between flooding and health outcome variables, adjusted for current health status and socioeconomic factors. Results: 3000 residents were invited to participate in this survey, with 960 responses (32%). People whose households were directly impacted by flooding had a decrease in perceived overall health (OR 5.3, 95% CI: 2.8–10.2), along with increases in psychological distress (OR 1.9, 1.1–3.5), decreased sleep quality (OR 2.3, 1.2–4.4), and probable PTSD (OR 2.3, 1.2–4.5). Residents were also more likely to increase usage of both tobacco (OR 6.3, 2.4–16.8) and alcohol (OR 7.0, 2.2–22.3) after flooding. Conclusions: There were significant impacts of flood events on residents’ health, in particular psychosocial health. Improved support strategies may need to be integrated into existing disaster management programs to reduce flood-related health impacts.
Resumo:
Two main deformational phases are recognised in the Archaean Boorara Domain of the Kalgoorlie Terrane, Eastern Goldfields Superterrane, Yilgarn Craton, Western Australia, primarily involving southover- north thrust faulting that repeated and thickened the stratigraphy, followed by east northeast – west-southwest shortening that resulted in macroscale folding of the greenstone lithologies. The domain preserves mid-greenschist facies metamorphic grade, with an increase to lower amphibolite metamorphic grade towards the north of the region. As a result of the deformation and metamorphism, individual stratigraphic horizons are difficult to trace continuously throughout the entire domain. Volcanological and sedimentological textures and structures, primary lithological contacts, petrography and geochemistry have been used to correlate lithofacies between faultbounded structural blocks. The correlated stratigraphic sequence for the Boorara Domain comprises quartzo-feldspathic turbidite packages, overlain by high-Mg tholeiitic basalt (lower basalt), coherent and clastic dacite facies, intrusive and extrusive komatiite units, an overlying komatiitic basalt unit (upper basalt), and at the stratigraphic top of the sequence, volcaniclastic quartz-rich turbidites. Reconstruction of the stratigraphy and consideration of emplacement dynamics has allowed reconstruction of the emplacement history and setting of the preserved sequence. This involves a felsic, mafic and ultramafic magmatic system emplaced as high-level intrusions, with localised emergent volcanic centres, into a submarine basin in which active sedimentation was occurring.
Resumo:
Sexual harassment in the workplace is a persistent and pervasive problem in Australia and elsewhere, demanding new and creative responses.1 One significant area that may inform prevention and response strategies is the area of ‘bystander approaches’. In examining the potential for bystander approaches to prevent and respond to workplace sexual harassment, this paper draws upon a range of theoretical and empirical research.
Resumo:
A detailed 3D lithological model framework was developed using GOCAD software to understand interactions between alluvial, volcanic and GAB aquifers and the spatial and temporal distribution of groundwater recharge to the alluvium of the Lockyer Valley. Groundwater chemistry, isotope data (H20-δ2H and δ18O , 87Sr/86Sr, 3H and 14C) and groundwater level time-series data from approximately 550 observation wells were integrated into the catchment-wide 3D model to assess the recharge processes involved. This approach enabled the identification of zones where recharge to the alluvium primarily occurs from stream water during episodic flood events. Importantly, the study also demonstrates that in some sections of the alluvium recharge is also from storm rainfall and seepage discharge from the underlying GAB aquifers. These other sources of recharge are indicated by (a) the absence of a response of groundwater levels to flooding in some areas, (b) old radiocarbon ages, and (c) distinct bedrock water chemistry and δ2H and δ18O signatures in alluvial groundwater at these locations. Integration of isotopes, water chemistry and time-series displays of groundwater levels before and after the 2010/2011 flood into the 3D model suggest that the spatial variations in the alluvial groundwater response are mostly controlled by valley morphology and lithological (i.e. permeability) variations within the alluvium. Examination of the groundwater level variations in the 3D model also enabled quantification of the volumetric change of groundwater stored in the unconfined alluvial aquifer prior to and post-flood events.
Resumo:
The year 2010 was the wettest year on record for Queensland, Australia and the wettest year since 1974 for Southeast Queensland. The extremely heavy rain in early January 2011 fell on the catchments of heavily saturated Brisbane and Stanley Rivers systems resulting in significant runoff which rapidly produced a widespread and devastating flood event. The area of inundation was equivalent to the total land area of France and Germany combined. Over 200,000 people were affected leaving 35 people dead and 9 missing. The damage bill was estimated at over $1B and cost to the economy at over $10B with over 30,000 homes and 6,000 business flooded and 86 towns and regional centres affected. The need to disburse disaster funding in a prompt manner to the affected population was paramount to facilitate individuals getting their lives back to some normality. However, the payout of insurance claims has proved to be a major area of community anger. The ongoing impasse in payment of insurance compensation is attributed to the nature and number of claims, confusing definition of flooding and the lack or accuracy of information needed to determine individually the properties affected and legitimacy of claims. Information was not readily available at the micro-level including, extent and type of inundation, flood heights at property level and cause of damage. Events during the aftermath highlighted widespread community misconceptions concerning the technical factors associated with the flood event and the impact of such on access to legitimate compensation and assistance. Individual and community wide concerns and frustration, anger and depression, have arisen resulting from delays in the timely settlement of insurance claims. Lessons learnt during the aftermath are presented in the context of their importance as a basis for inculcating communities impacted by the flood event with resilience for the future.
Resumo:
Objective To assess the effects of the 2011 floods in Brisbane, Australia, on residents’ physical and mental health. Methods Residents who had been affected by the floods completed a community-based survey that examined the direct impact of flooding on households and their perceived physical and mental health. Outcome variables included overall and respiratory health and mental health outcomes related to psychological distress, sleep quality, and posttraumatic stress disorder (PTSD). Multivariable logistic regression was used to examine the association between flooding and perceived health outcome variables, adjusted for current health status and sociodemographic factors. Results Residents whose households were directly affected by flooding were more likely to report poor overall (Odds Ratio [OR] 5.3; 95% CI, 2.8-10.1) and respiratory (OR 2.3; 95% CI, 1.1-4.6) health, psychological distress (OR 1.9; 95% CI, 1.1-3.5), poor sleep quality (OR 2.3; 95% CI, 1.2-4.4), and probable PTSD (OR 2.3; 95% CI, 1.2-4.5). Conclusions The 2011 Brisbane floods had significant impact on the physical and psychosocial health of residents. Improved support strategies may need to be integrated into existing disaster management programs to reduce flood-related health impacts, particularly those related to mental health.
Resumo:
With significant population growth experienced in South East Queensland over the past two decades and a high rate of growth expected to continue in coming decades, the Queensland Government is promoting urban consolidation planning policies to manage growth sustainably. Multi-residential buildings will play an important role in facilitating the increased densities which urban consolidation policies imply. However, a major flood event in January 2011 has brought to light the vulnerability of certain types of multi-residential typologies to power outages. The crisis conditions exposed how contemporary building design and construction practices, coupled with regulatory and planning issues, appear to have compromised the resilience and habitability of multi-storey residential buildings. In the greater urban area of Brisbane, Queensland, the debilitating dependence that certain types of apartment buildings have on mains electricity was highlighted by residents’ experiences of the Brisbane River flood disaster, before, during and after the event. This research examined high density residential buildings in West End, Brisbane, an inner city suburb which was severely affected by the flood and is earmarked for significant urban densification under the Brisbane City Plan. Medium-to-high-density residential buildings in the suburb were mapped in flooded and non-flooded locations and a database containing information about the buildings was created. Parameters included date of construction, number of storeys, systems of access and circulation, and potential for access to natural light and ventilation for habitable areas. A series of semi-structured interviews were conducted with residents involved in the owners’ management committees of several buildings to verify information the mapping could not provide. The interviews identified a number of critical systems failures due to power outage which had a significant impact on residents’ wellbeing, comfort and safety. Building services such as lifts, running water, fire alarms, security systems and air-conditioning ceased to operate when power was disconnected to neighbourhoods and buildings in anticipation of rising flood waters. Lack of access to buildings and dwellings, lack of safety, lack of building security, and lack of thermal comfort affected many residents whether or not their buildings were actually subjected to inundation, with some buildings rendered uninhabitable for a prolonged period. The extent of the impact on residents was dramatically influenced by the scale and type of building inhabited, with those dwelling in buildings under a 25m height limit, with a single lift, found to be most affected. The energy-dependency and strong trend of increasing power demands of high-rise buildings is well-documented. Extended electricity outages such as the one brought about by the 2011 flood in Queensland are likely to happen more frequently than the 50-year average of the flood event itself. Electricity blackouts can result from a number of man-made or natural causes, including shortages caused by demand exceeding supply. This paper highlights the vulnerability of energy-dependent buildings to power outages and investigates options for energy security for occupants of multi-storey buildings and makes recommendations to increase resilience and general liveability in multi-residential buildings in the subtropics through design modifications.
Resumo:
The inner city Brisbane suburbs of the West End peninsula are poised for redevelopment. Located within walking distance to CBD workplaces, home to Queensland’s highest value cultural precinct, and high quality riverside parklands, there is currently a once-in-a-lifetime opportunity to redevelop parts of the suburb to create a truly urban neighbourhood. According to a local community association, local residents agree and embrace the concept of high-density living, but are opposed to the high-rise urban form (12 storeys) advocated by the City’s planning authority (BCC, 2011) and would prefer to see medium-rise (5-8 storeys) medium-density built form. Brisbane experienced a major flood event which inundated the peninsula suburbs of West End in summer January 2011. The vulnerability of taller buildings to the vagaries of climate and more extreme weather events and their reliance on main electricity was exposed when power outages immediately before, during and after the flood disaster seriously limited occupants’ access and egress when elevators were disabled. Not all buildings were flooded but dwellings quickly became unliveable due to disabled air-conditioning. Some tall buildings remained uninhabitable for several weeks after the event. This paper describes an innovative design research method applied to the complex problem of resilient, sustainable neighbourhood form in subtropical cities, in which a thorough comparative analysis of a range of multiple-dwelling types has revealed the impact that government policy regarding design of the physical environment has on a community’s resilience. The outcomes advocate the role of climate-responsive design in averting the rising human capital and financial costs of natural disasters and climate change.
Resumo:
The Bouncing Back Project, which began after the Queensland flood event in January 2011, has organically grown through a number of reiterations as per the diagram above. In the August 2011 it resulted in the physical construction of an Emergency Shelter [designed by GreenLeaf Engineers] in Sydney at the Customs House in Circular Quay and a conference paper publication at the AASA conference. To date this research has progressed without any research grant funding and has resulted in significant media interest. During the construction of the Emergency Shelter we collected a wide range of multimedia data which is being compilled into a documentary focusing on the architecture students’ experience throughout the iterations of Bouncing Back.