908 resultados para finite contacts
Resumo:
Denosumab reduced the incidence of new fractures in postmenopausal women with osteoporosis by 68% at the spine and 40% at the hip over 36 months compared with placebo in the FREEDOM study. This efficacy was supported by improvements from baseline in vertebral (18.2%) strength in axial compression and femoral (8.6%) strength in sideways fall configuration at 36 months, estimated in Newtons by an established voxel-based finite element (FE) methodology. Since FE analyses rely on the choice of meshes, material properties, and boundary conditions, the aim of this study was to independently confirm and compare the effects of denosumab on vertebral and femoral strength during the FREEDOM trial using an alternative smooth FE methodology. Unlike the previous FE study, effects on femoral strength in physiological stance configuration were also examined. QCT data for the proximal femur and two lumbar vertebrae were analyzed by smooth FE methodology at baseline, 12, 24, and 36 months for 51 treated (denosumab) and 47 control (placebo) subjects. QCT images were segmented and converted into smooth FE models to compute bone strength. L1 and L2 vertebral bodies were virtually loaded in axial compression and the proximal femora in both fall and stance configurations. Denosumab increased vertebral body strength by 10.8%, 14.0%, and 17.4% from baseline at 12, 24, and 36 months, respectively (p < 0.0001). Denosumab also increased femoral strength in the fall configuration by 4.3%, 5.1%, and 7.2% from baseline at 12, 24, and 36 months, respectively (p < 0.0001). Similar improvements were observed in the stance configuration with increases of 4.2%, 5.2%, and 5.2% from baseline (p ≤ 0.0007). Differences between the increasing strengths with denosumab and the decreasing strengths with placebo were significant starting at 12 months (vertebral and femoral fall) or 24 months (femoral stance). Using an alternative smooth FE methodology, we confirmed the significant improvements in vertebral body and proximal femur strength previously observed with denosumab. Estimated increases in strength with denosumab and decreases with placebo were highly consistent between both FE techniques.
Resumo:
The International Society for Clinical Densitometry (ISCD) has developed new official positions for the clinical use of quantitative computed tomography (QCT)-based finite element analysis of the spine and hip. The ISCD task force for QCT reviewed the evidence for clinical applications and presented a report with recommendations at the 2015 ISCD Position Development Conference. Here we discuss the agreed upon ISCD official positions with supporting medical evidence, rationale, controversy, and suggestions for further study. Parts I and III address the clinical use of QCT of the hip, and the clinical feasibility of existing techniques for opportunistic screening of osteoporosis using CT scans obtained for other diagnosis such as colonography was addressed.
Resumo:
Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone's material behavior. The aim of this study was to elucidate if quasi-static non-linear homogenized finite element analyses can predict in vitro mechanical properties of proximal femora assessed in dynamic drop tower experiments. The case-specific numerical models of thirteen femora predicted the strength (R2=0.84, SEE=540 N, 16.2%), stiffness (R2=0.82, SEE=233 N/mm, 18.0%) and fracture energy (R2=0.72, SEE=3.85 J, 39.6%); and provided fair qualitative matches with the fracture patterns. The influence of material anisotropy was negligible for all predictions. These results suggest that quasi-static homogenized finite element analysis may be used to predict mechanical properties of proximal femora in the dynamic sideways fall situation.
Resumo:
Periacetabular Osteotomy (PAO) is a joint preserving surgical intervention intended to increase femoral head coverage and thereby to improve stability in young patients with hip dysplasia. Previously, we developed a CT-based, computer-assisted program for PAO diagnosis and planning, which allows for quantifying the 3D acetabular morphology with parameters such as acetabular version, inclination, lateral center edge (LCE) angle and femoral head coverage ratio (CO). In order to verify the hypothesis that our morphology-based planning strategy can improve biomechanical characteristics of dysplastic hips, we developed a 3D finite element model based on patient-specific geometry to predict cartilage contact stress change before and after morphology-based planning. Our experimental results demonstrated that the morphology-based planning strategy could reduce cartilage contact pressures and at the same time increase contact areas. In conclusion, our computer-assisted system is an efficient tool for PAO planning.
Resumo:
Nitinol stent oversizing is frequently performed in peripheral arteries to ensure a desirable lumen gain. However, the clinical effect of mis-sizing remains controversial. The goal of this study was to provide a better understanding of the structural and hemodynamic effects of Nitinol stent oversizing. Five patient-specific numerical models of non-calcified popliteal arteries were developed to simulate the deployment of Nitinol stents with oversizing ratios ranging from 1.1 to 1.8. In addition to arterial biomechanics, computational fluid dynamics methods were adopted to simulate the physiological blood flow inside the stented arteries. Results showed that stent oversizing led to a limited increase in the acute lumen gain, albeit at the cost of a significant increase in arterial wall stresses. Furthermore, localized areas affected by low Wall Shear Stress increased with higher oversizing ratios. Stents were also negatively impacted by the procedure as their fatigue safety factors gradually decreased with oversizing. These adverse effects to both the artery walls and stents may create circumstances for restenosis. Although the ideal oversizing ratio is stent-specific, this study showed that Nitinol stent oversizing has a very small impact on the immediate lumen gain, which contradicts the clinical motivations of the procedure.
Resumo:
We study the effects of a finite cubic volume with twisted boundary conditions on pseudoscalar mesons. We apply Chiral Perturbation Theory in the p-regime and introduce the twist by means of a constant vector field. The corrections of masses, decay constants, pseudoscalar coupling constants and form factors are calculated at next-to-leading order. We detail the derivations and compare with results available in the literature. In some case there is disagreement due to a different treatment of new extra terms generated from the breaking of the cubic invariance. We advocate to treat such terms as renormalization terms of the twisting angles and reabsorb them in the on-shell conditions. We confirm that the corrections of masses, decay constants, pseudoscalar coupling constants are related by means of chiral Ward identities. Furthermore, we show that the matrix elements of the scalar (resp. vector) form factor satisfies the Feynman–Hellman Theorem (resp. the Ward–Takahashi identity). To show the Ward–Takahashi identity we construct an effective field theory for charged pions which is invariant under electromagnetic gauge transformations and which reproduces the results obtained with Chiral Perturbation Theory at a vanishing momentum transfer. This generalizes considerations previously published for periodic boundary conditions to twisted boundary conditions. Another method to estimate the corrections in finite volume are asymptotic formulae. Asymptotic formulae were introduced by Lüscher and relate the corrections of a given physical quantity to an integral of a specific amplitude, evaluated in infinite volume. Here, we revise the original derivation of Lüscher and generalize it to finite volume with twisted boundary conditions. In some cases, the derivation involves complications due to extra terms generated from the breaking of the cubic invariance. We isolate such terms and treat them as renormalization terms just as done before. In that way, we derive asymptotic formulae for masses, decay constants, pseudoscalar coupling constants and scalar form factors. At the same time, we derive also asymptotic formulae for renormalization terms. We apply all these formulae in combination with Chiral Perturbation Theory and estimate the corrections beyond next-to-leading order. We show that asymptotic formulae for masses, decay constants, pseudoscalar coupling constants are related by means of chiral Ward identities. A similar relation connects in an independent way asymptotic formulae for renormalization terms. We check these relations for charged pions through a direct calculation. To conclude, a numerical analysis quantifies the importance of finite volume corrections at next-to-leading order and beyond. We perform a generic Analysis and illustrate two possible applications to real simulations.
Resumo:
The deformation behavior of atomically clean, nanometer sized tungsten / gold contacts was studied at room temperature in ultra-high vacuum. An instrument that combines atomic force microscopy (AFM), scanning tunneling microscopy (STM), and field ion microscopy (FIM) into a single experimental apparatus was designed, constructed, and calibrated. A cross-hair force sensor having a spring constant of - 442 N/m was developed and its motion was monitored during indentation experiments with a differential interferometer. Tungsten tips of controlled size (12.8 nm < tip radius < 2 1.6 nm) were first shaped and characterized using FIM and then indented into a Au (1 10) single crystal to depths ranging from 1.5 nrn to 18 nm using the force sensor. Continuum mechanics models were found to be valid in predicting elastic deformation during initial contact and plastic zone depths despite our small size regime. Multiple discrete yielding events lasting < 1.5 ms were observed during the plastic deformation regime; at the yield points a maximum value for the principal shear stress was measured to be 5 + 1 GPa. During tip withdrawal, "pop-out" events relating to material relaxation within the contact were observed. Adhesion between the tip and sample led to experimental signatures that suggest neck formation prior to the break of contact. STM images of indentation holes revealed various shapes that can be attributed to the (1 1 1 ) (1 10) crystallographic slip system in gold. FIM images of the tip after indentation showed no evidence of tip damage
Resumo:
A characterization of a property of binary relations is of finite type if it is stated in terms of ordered T-tuples of alternatives for some positive integer T. A characterization of finite type can be used to determine in polynomial time whether a binary relation over a finite set has the property characterized. Unfortunately, Pareto representability in R2 has no characterization of finite type (Knoblauch, 2002). This result is generalized below Rl, l larger than 2. The method of proof is applied to other properties of binary relations.
Resumo:
The characteristics of a global set-up of the Finite-Element Sea-Ice Ocean Model under forcing of the period 1958-2004 are presented. The model set-up is designed to study the variability in the deep-water mass formation areas and was therefore regionally better resolved in the deep-water formation areas in the Labrador Sea, Greenland Sea, Weddell Sea and Ross Sea. The sea-ice model reproduces realistic sea-ice distributions and variabilities in the sea-ice extent of both hemispheres as well as sea-ice transport that compares well with observational data. Based on a comparison between model and ocean weather ship data in the North Atlantic, we observe that the vertical structure is well captured in areas with a high resolution. In our model set-up, we are able to simulate decadal ocean variability including several salinity anomaly events and corresponding fingerprint in the vertical hydrography. The ocean state of the model set-up features pronounced variability in the Atlantic Meridional Overturning Circulation as well as the associated mixed layer depth pattern in the North Atlantic deep-water formation areas.
Resumo:
Esta tesis investiga cuales son los parámetros más críticos que condicionan los resultados que obtienen en los ensayos de protección de peatones la flota Europea de vehículos, según la reglamentación europea de protección de peatones de 2003 (Directiva CE 2003/102) y el posterior Reglamento de 2009 (Reglamento CE 2009/78). En primer lugar se ha analizado el contexto de la protección de peatones en Europa, viendo la historia de las diferentes propuestas de procedimientos de ensayo así como los cambios (y las razones de los mismos) que han sufrido a lo largo del proceso de definición de la normativa Europea. Con la información disponible de más de 400 de estos ensayos se han desarrollado corredores de rigidez para los frontales de los diferentes segmentos de la flota de vehículos europea, siendo este uno de los resultados más relevantes de esta tesis. Posteriormente, esta tesis ha realizado un estudio accidentológico en detalle de los escenarios de atropello de peatones, identificando sus características más relevantes, los grupos de población con mayor riesgo y los tipos de lesiones más importantes que aparecen (en frecuencia y severidad), que han sentado las bases para analizar con modelos matemáticos hasta qué punto los métodos de ensayo propuestos realmente tienen estos factores en cuenta. Estos análisis no habrían sido posibles sin el desarrollo de las nuevas herramientas que se presentan en esta tesis, que permiten construir instantáneamente el modelo matemático de cualquier vehículo y cualquier peatón adulto para analizar su iteración. Así, esta tesis ha desarrollado una metodología rápida para desarrollar modelos matemáticos de vehículos a demanda, de cualquier marca y modelo y con las características geométricas y de rigidez deseados que permitan representarlo matemáticamente y del mismo modo, ha investigado cómo evoluciona el comportamiento del cuerpo humano durante el envejecimiento y ha implementado una funcionalidad de escalado en edad al modelo de peatón en multicuerpo de MADYMO (ya escalable en tamaño) para permitir modelar ad hoc cualquier peatón adulto (en género y edad). Finalmente, esta tesis también ha realizado, utilizando modelos de elementos finitos del cuerpo humano, diferentes estudios sobre la biomecánica de las lesiones más frecuentes de este tipo de accidentes, (en piernas y cabeza) con el objetivo de mejorar los procedimientos de ensayo para que predigan mejor el tipo de lesiones que se quieren evitar. Con el marco temporal y las condiciones de contorno de esta tesis se han centrado los esfuerzos en reforzar algunos aspectos críticos pero puntuales sobre cómo mejorar el ensayo de cabeza y, sobretodo, en proponer soluciones viables y con un valor añadido real al ensayo de pierna contra parachoques, sin cambiar la esencia del mismo pero proponiendo un nuevo impactador mejorado que incorpore una masa extra que representa a la parte superior del cuerpo y sea válido para toda la flota europea de vehículos independiente de la geometría de su frontal.
Resumo:
A two-dimensional finite element model of current flow in the front surface of a PV cell is presented. In order to validate this model we perform an experimental test. Later, particular attention is paid to the effects of non-uniform illumination in the finger direction which is typical in a linear concentrator system. Fill factor, open circuit voltage and efficiency are shown to decrease with increasing degree of non-uniform illumination. It is shown that these detrimental effects can be mitigated significantly by reoptimization of the number of front surface metallization fingers to suit the degree of non-uniformity. The behavior of current flow in the front surface of a cell operating at open circuit voltage under non-uniform illumination is discussed in detail.
Resumo:
A finite element model was used to simulate timberbeams with defects and predict their maximum load in bending. Taking into account the elastoplastic constitutive law of timber, the prediction of fracture load gives information about the mechanisms of timber failure, particularly with regard to the influence of knots, and their local graindeviation, on the fracture. A finite element model was constructed using the ANSYS element Plane42 in a plane stress 2D-analysis, which equates thickness to the width of the section to create a mesh which is as uniform as possible. Three sub-models reproduced the bending test according to UNE EN 408: i) timber with holes caused by knots; ii) timber with adherent knots which have structural continuity with the rest of the beam material; iii) timber with knots but with only partial contact between knot and beam which was artificially simulated by means of contact springs between the two materials. The model was validated using ten 45 × 145 × 3000 mm beams of Pinus sylvestris L. which presented knots and graindeviation. The fracture stress data obtained was compared with the results of numerical simulations, resulting in an adjustment error less of than 9.7%