937 resultados para few-body problems


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a theoretical investigation seeking to learn more about architecture by looking at architectural practice through another discipline. In this research architecture is investigated by examining its relationship with bodies through performance and theatre set design. This thesis aims to build on existing architectural theory, in which an absence of discourse on the body has been identified, by analysing representations of architecture and the body in performance. The research specifically examines the relationship between the body, architecture and authority in performance through the analysis of several performance works.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a mixed-type Fourier transform of a general form in the case of water of infinite depth and the method of eigenfunction expansion in the case of water of finite depth, several boundary-value problems involving the propagation and scattering of time harmonic surface water waves by vertical porous walls have been fully investigated, taking into account the effect of surface tension also. Known results are recovered either directly or as particular cases of the general problems under consideration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady free convection flow in the stagnation-point region of a heated three-dimensional body placed in an ambient fluid is studied under boundary layer approximations. We have considered the case where there is an initial steady state that is perturbed by a step-change in the wall temperature. The non-linear coupled partial differential equations governing the free convection flow are solved numerically using a finite difference scheme. The presented results show the temporal development of the momentum and thermal boundary layer characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accelerated rate of increase in atmospheric CO2 concentration in recent years has revived the idea of stabilizing the global climate through geoengineering schemes. Majority of the proposed geoengineering schemes will attempt to reduce the amount of solar radiation absorbed by our planet. Climate modelling studies of these so called 'sunshade geoengineering schemes' show that global warming from increasing concentrations of CO2 can be mitigated by intentionally manipulating the amount of sunlight absorbed by the climate system. These studies also suggest that the residual changes could be large on regional scales, so that climate change may not be mitigated on a local basis. More recent modelling studies have shown that these schemes could lead to a slow-down in the global hydrological cycle. Other problems such as changes in the terrestrial carbon cycle and ocean acidification remain unsolved by sunshade geoengineering schemes. In this article, I review the proposed geoengineering schemes, results from climate models and discuss why geoengineering is not the best option to deal with climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical properties of polyvinyl alcohol (PVA) and poly(methyl methacrylate) (PMMA)-matrix composites reinforced by functionalized few-layer graphene (FG) have been evaluated using the nano-indentation technique. A significant increase in both the elastic modulus and hardness is observed with the addition of 0.6 wt% of graphene. The crystallinity of PVA also increases with the addition of FG. This and the good mechanical interaction between the polymer and the FG, which provides better load transfer between the matrix and the fiber, are suggested to be responsible for the observed improvement in mechanical properties of the polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some of the well known formulations for topology optimization of compliant mechanisms could lead to lumped compliant mechanisms. In lumped compliance, most of the elastic deformation in a mechanism occurs at few points, while rest of the mechanism remains more or less rigid. Such points are referred to as point-flexures. It has been noted in literature that high relative rotation is associated with point-flexures. In literature we also find a formulation of local constraint on relative rotations to avoid lumped compliance. However it is well known that a global constraint is easier to handle than a local constraint, by a numerical optimization algorithm. The current work presents a way of putting global constraint on relative rotations. This constraint is also simpler to implement since it uses linearized rotation at the center of finite-elements, to compute relative rotations. I show the results obtained by using this constraint oil the following benchmark problems - displacement inverter and gripper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enumeration of adhered cells of Thiobacillus ferrooxidans on sulphide minerals through protein assay poses problems due to interference from dissolved mineral constituents. The manner in which sulphide minerals such as pyrite, chalcopyrite, sphalerite, arsenopyrite and pyrrhotite interfere with bacterial protein estimation is demonstrated. Such interferences can be minimised either through dilution or addition of H2O2 to the filtrate after hot alkaline digestion of the biotreated mineral samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider some non-autonomous second order Cauchy problems of the form u + B(t)(u) over dot + A(t)u = f (t is an element of [0, T]), u(0) = (u) over dot(0) = 0. We assume that the first order problem (u) over dot + B(t)u = f (t is an element of [0, T]), u(0) = 0, has L-p-maximal regularity. Then we establish L-p-maximal regularity of the second order problem in situations when the domains of B(t(1)) and A(t(2)) always coincide, or when A(t) = kappa B(t).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel three-dimensional hybrid smoothed finite element method (H-SFEM) for solid mechanics problems. In 3D H-SFEM, the strain field is assumed to be the weighted average between compatible strains from the finite element method (FEM) and smoothed strains from the node-based smoothed FEM with a parameter α equipped into H-SFEM. By adjusting α, the upper and lower bound solutions in the strain energy norm and eigenfrequencies can always be obtained. The optimized α value in 3D H-SFEM using a tetrahedron mesh possesses a close-to-exact stiffness of the continuous system, and produces ultra-accurate solutions in terms of displacement, strain energy and eigenfrequencies in the linear and nonlinear problems. The novel domain-based selective scheme is proposed leading to a combined selective H-SFEM model that is immune from volumetric locking and hence works well for nearly incompressible materials. The proposed 3D H-SFEM is an innovative and unique numerical method with its distinct features, which has great potential in the successful application for solid mechanics problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Algorithms for planning quasistatic attitude maneuvers based on the Jacobian of the forward kinematic mapping of fully-reversed (FR) sequences of rotations are proposed in this paper. An FR sequence of rotations is a series of finite rotations that consists of initial rotations about the axes of a body-fixed coordinate frame and subsequent rotations that undo these initial rotations. Unlike the Jacobian of conventional systems such as a robot manipulator, the Jacobian of the system manipulated through FR rotations is a null matrix at the identity, which leads to a total breakdown of the traditional Jacobian formulation. Therefore, the Jacobian algorithm is reformulated and implemented so as to synthesize an FR sequence for a desired rotational displacement. The Jacobian-based algorithm presented in this paper identifies particular six-rotation FR sequences that synthesize desired orientations. We developed the single-step and the multiple-step Jacobian methods to accomplish a given task using six-rotation FR sequences. The single-step Jacobian method identifies a specific FR sequence for a given desired orientation and the multiple-step Jacobian algorithm synthesizes physically feasible FR rotations on an optimal path. A comparison with existing algorithms verifies the fast convergence ability of the Jacobian-based algorithm. Unlike closed-form solutions to the inverse kinematics problem, the Jacobian-based algorithm determines the most efficient FR sequence that yields a desired rotational displacement through a simple and inexpensive numerical calculation. The procedure presented here is useful for those motion planning problems wherein the Jacobian is singular or null.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the conventional MOSFET's scaling is approaching the limit imposed by short channel effects, Double Gate (DG) MOS transistors are appearing as the most feasible candidate in terms of technology in sub-45nm technology nodes. As the short channel effect in DG transistor is controlled by the device geometry, undoped or lightly doped body is used to sustain the channel. There exits a disparity in threshold voltage calculation criteria of undoped-body symmetric double gate transistors which uses two definitions, one is potential based and the another is charge based definition. In this paper, a novel concept of "crossover point'' is introduced, which proves that the charge-based definition is more accurate than the potential based definition.The change in threshold voltage with body thickness variation for a fixed channel length is anomalous as predicted by potential based definition while it is monotonous for charge based definition.The threshold voltage is then extracted from drain currant versus gate voltage characteristics using linear extrapolation and "Third Derivative of Drain-Source Current'' method or simply "TD'' method. The trend of threshold voltage variation is found same in both the cases which support charge-based definition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the conventional MOSFETs scaling is approaching the limit imposed by short channel effects, Double Gate (DG) MOS transistors are appearing as the most feasible andidate in terms of technology in sub-45nm technology nodes. As the short channel effect in DG transistor is controlled by the device geometry, undoped or lightly doped body, is used to sustain the channel. There exits a disparity in threshold voltage calculation criteria of undoped-body symmetric double gate transistors which uses two definitions, one is potential based and the another is charge based definition. In this paper, a novel concept of "crossover point" is introduced, which proves that the charge-based definition is more accurate than the potential based definition. The change in threshold voltage with body thickness variation for a fixed channel length is anomalous as predicted by, potential based definition while it is monotonous for change based definition. The threshold voltage is then extracted from drain currant versus gate voltage characteristics using linear extrapolation and "Third Derivative of Drain-Source Current" method or simply "TD" method. The trend of threshold voltage variation is found some in both the cases which support charge-based definition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite materials exhibiting different moduli in tension and in compression, commonly called as bimodular composites are being used in many engineering fields. A finite element analysis is carried out for small deflection static behavior of laminated curved beams of bi modulus materials for both solid and hollow circular cross-sections using an iterative procedure. The finite element has 16 d.o.f. and uses the displacement field in terms of first order Hermite in terpolation polynomials. The neutral surface, i.e. the locus of points having zero axial strain is found to vary drastically depending on the loading, lay up schemes and radius of curvature. As il lustrations, plots of the cross-sections of the ruled neutral-surface are presented for some of the investigated cases. Using this element a few problems of curved laminated beams of bimodulus materials are solved for both solid and hollow circular cross-sections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vibrational stability of large flexible structurally damped spacecraft carrying internal angular momentum and undergoing large rigid body rotations is analysed modeling the systems as elastic continua. Initially, analytical solutions to the motion of rigid gyrostats under torque-free conditions are developed. The solutions to the gyrostats modeled as axisymmetric and triaxial spacecraft carrying three and two constant speed momentum wheels, respectively, with spin axes aligned with body principal axes are shown to be complicated. These represent extensions of solutions for simpler cases existing in the literature. Using these solutions and modal analysis, the vibrational equations are reduced to linear ordinary differential equations. Equations with periodically varying coefficients are analysed applying Floquet theory. Study of a few typical beam- and plate-like spacecraft configurations indicate that the introduction of a single reaction wheel into an axisymmetric satellite does not alter the stability criterion. However, introduction of constant speed rotors deteriorates vibrational stability. Effects of structural damping and vehicle inertia ratio are also studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plates with V-through edge notches subjected to pure bending and specimens with rectangular edge-through-notches subjected to combined bending and axial pull were investigated (under live-load and stress-frozen conditions) in a completely nondestructive manner using scattered-light photoelasticity. Stress-intensity factors (SIFs) were evaluated by analysing the singular stress distributions near crack-tips. Improved methods are suggested for the evaluation of SIFs. The thickness-wise variation of SIFs is also obtained in the investigation. The results obtained are compared with the available theoretical solutions.