957 resultados para evolutionary computation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a recent paper, Bai and Perron (1998) considered theoretical issues related to the limiting distribution of estimators and test statistics in the linear model with multiple structural changes. In this companion paper, we consider practical issues for the empirical applications of the procedures. We first address the problem of estimation of the break dates and present an efficient algorithm to obtain global minimizers of the sum of squared residuals. This algorithm is based on the principle of dynamic programming and requires at most least-squares operations of order O(T 2) for any number of breaks. Our method can be applied to both pure and partial structural-change models. Secondly, we consider the problem of forming confidence intervals for the break dates under various hypotheses about the structure of the data and the errors across segments. Third, we address the issue of testing for structural changes under very general conditions on the data and the errors. Fourth, we address the issue of estimating the number of breaks. We present simulation results pertaining to the behavior of the estimators and tests in finite samples. Finally, a few empirical applications are presented to illustrate the usefulness of the procedures. All methods discussed are implemented in a GAUSS program available upon request for non-profit academic use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Une réconciliation entre un arbre de gènes et un arbre d’espèces décrit une histoire d’évolution des gènes homologues en termes de duplications et pertes de gènes. Pour inférer une réconciliation pour un arbre de gènes et un arbre d’espèces, la parcimonie est généralement utilisée selon le nombre de duplications et/ou de pertes. Les modèles de réconciliation sont basés sur des critères probabilistes ou combinatoires. Le premier article définit un modèle combinatoire simple et général où les duplications et les pertes sont clairement identifiées et la réconciliation parcimonieuse n’est pas la seule considérée. Une architecture de toutes les réconciliations est définie et des algorithmes efficaces (soit de dénombrement, de génération aléatoire et d’exploration) sont développés pour étudier les propriétés combinatoires de l’espace de toutes les réconciliations ou seulement les plus parcimonieuses. Basée sur le processus classique nommé naissance-et-mort, un algorithme qui calcule la vraisemblance d’une réconciliation a récemment été proposé. Le deuxième article utilise cet algorithme avec les outils combinatoires décrits ci-haut pour calculer efficacement (soit approximativement ou exactement) les probabilités postérieures des réconciliations localisées dans le sous-espace considéré. Basé sur des taux réalistes (selon un modèle probabiliste) de duplication et de perte et sur des données réelles/simulées de familles de champignons, nos résultats suggèrent que la masse probabiliste de toute l’espace des réconciliations est principalement localisée autour des réconciliations parcimonieuses. Dans un contexte d’approximation de la probabilité d’une réconciliation, notre approche est une alternative intéressante face aux méthodes MCMC et peut être meilleure qu’une approche sophistiquée, efficace et exacte pour calculer la probabilité d’une réconciliation donnée. Le problème nommé Gene Tree Parsimony (GTP) est d’inférer un arbre d’espèces qui minimise le nombre de duplications et/ou de pertes pour un ensemble d’arbres de gènes. Basé sur une approche qui explore tout l’espace des arbres d’espèces pour les génomes considérés et un calcul efficace des coûts de réconciliation, le troisième article décrit un algorithme de Branch-and-Bound pour résoudre de façon exacte le problème GTP. Lorsque le nombre de taxa est trop grand, notre algorithme peut facilement considérer des relations prédéfinies entre ensembles de taxa. Nous avons testé notre algorithme sur des familles de gènes de 29 eucaryotes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les séquences protéiques naturelles sont le résultat net de l’interaction entre les mécanismes de mutation, de sélection naturelle et de dérive stochastique au cours des temps évolutifs. Les modèles probabilistes d’évolution moléculaire qui tiennent compte de ces différents facteurs ont été substantiellement améliorés au cours des dernières années. En particulier, ont été proposés des modèles incorporant explicitement la structure des protéines et les interdépendances entre sites, ainsi que les outils statistiques pour évaluer la performance de ces modèles. Toutefois, en dépit des avancées significatives dans cette direction, seules des représentations très simplifiées de la structure protéique ont été utilisées jusqu’à présent. Dans ce contexte, le sujet général de cette thèse est la modélisation de la structure tridimensionnelle des protéines, en tenant compte des limitations pratiques imposées par l’utilisation de méthodes phylogénétiques très gourmandes en temps de calcul. Dans un premier temps, une méthode statistique générale est présentée, visant à optimiser les paramètres d’un potentiel statistique (qui est une pseudo-énergie mesurant la compatibilité séquence-structure). La forme fonctionnelle du potentiel est par la suite raffinée, en augmentant le niveau de détails dans la description structurale sans alourdir les coûts computationnels. Plusieurs éléments structuraux sont explorés : interactions entre pairs de résidus, accessibilité au solvant, conformation de la chaîne principale et flexibilité. Les potentiels sont ensuite inclus dans un modèle d’évolution et leur performance est évaluée en termes d’ajustement statistique à des données réelles, et contrastée avec des modèles d’évolution standards. Finalement, le nouveau modèle structurellement contraint ainsi obtenu est utilisé pour mieux comprendre les relations entre niveau d’expression des gènes et sélection et conservation de leur séquence protéique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il y a des problemes qui semblent impossible a resoudre sans l'utilisation d'un tiers parti honnete. Comment est-ce que deux millionnaires peuvent savoir qui est le plus riche sans dire a l'autre la valeur de ses biens ? Que peut-on faire pour prevenir les collisions de satellites quand les trajectoires sont secretes ? Comment est-ce que les chercheurs peuvent apprendre les liens entre des medicaments et des maladies sans compromettre les droits prives du patient ? Comment est-ce qu'une organisation peut ecmpecher le gouvernement d'abuser de l'information dont il dispose en sachant que l'organisation doit n'avoir aucun acces a cette information ? Le Calcul multiparti, une branche de la cryptographie, etudie comment creer des protocoles pour realiser de telles taches sans l'utilisation d'un tiers parti honnete. Les protocoles doivent etre prives, corrects, efficaces et robustes. Un protocole est prive si un adversaire n'apprend rien de plus que ce que lui donnerait un tiers parti honnete. Un protocole est correct si un joueur honnete recoit ce que lui donnerait un tiers parti honnete. Un protocole devrait bien sur etre efficace. Etre robuste correspond au fait qu'un protocole marche meme si un petit ensemble des joueurs triche. On demontre que sous l'hypothese d'un canal de diusion simultane on peut echanger la robustesse pour la validite et le fait d'etre prive contre certains ensembles d'adversaires. Le calcul multiparti a quatre outils de base : le transfert inconscient, la mise en gage, le partage de secret et le brouillage de circuit. Les protocoles du calcul multiparti peuvent etre construits avec uniquements ces outils. On peut aussi construire les protocoles a partir d'hypoth eses calculatoires. Les protocoles construits a partir de ces outils sont souples et peuvent resister aux changements technologiques et a des ameliorations algorithmiques. Nous nous demandons si l'efficacite necessite des hypotheses de calcul. Nous demontrons que ce n'est pas le cas en construisant des protocoles efficaces a partir de ces outils de base. Cette these est constitue de quatre articles rediges en collaboration avec d'autres chercheurs. Ceci constitue la partie mature de ma recherche et sont mes contributions principales au cours de cette periode de temps. Dans le premier ouvrage presente dans cette these, nous etudions la capacite de mise en gage des canaux bruites. Nous demontrons tout d'abord une limite inferieure stricte qui implique que contrairement au transfert inconscient, il n'existe aucun protocole de taux constant pour les mises en gage de bit. Nous demontrons ensuite que, en limitant la facon dont les engagements peuvent etre ouverts, nous pouvons faire mieux et meme un taux constant dans certains cas. Ceci est fait en exploitant la notion de cover-free families . Dans le second article, nous demontrons que pour certains problemes, il existe un echange entre robustesse, la validite et le prive. Il s'effectue en utilisant le partage de secret veriable, une preuve a divulgation nulle, le concept de fantomes et une technique que nous appelons les balles et les bacs. Dans notre troisieme contribution, nous demontrons qu'un grand nombre de protocoles dans la litterature basee sur des hypotheses de calcul peuvent etre instancies a partir d'une primitive appelee Transfert Inconscient Veriable, via le concept de Transfert Inconscient Generalise. Le protocole utilise le partage de secret comme outils de base. Dans la derniere publication, nous counstruisons un protocole efficace avec un nombre constant de rondes pour le calcul a deux parties. L'efficacite du protocole derive du fait qu'on remplace le coeur d'un protocole standard par une primitive qui fonctionne plus ou moins bien mais qui est tres peu couteux. On protege le protocole contre les defauts en utilisant le concept de privacy amplication .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'objectif de cette thèse est de présenter différentes applications du programme de recherche de calcul conditionnel distribué. On espère que ces applications, ainsi que la théorie présentée ici, mènera à une solution générale du problème d'intelligence artificielle, en particulier en ce qui a trait à la nécessité d'efficience. La vision du calcul conditionnel distribué consiste à accélérer l'évaluation et l'entraînement de modèles profonds, ce qui est très différent de l'objectif usuel d'améliorer sa capacité de généralisation et d'optimisation. Le travail présenté ici a des liens étroits avec les modèles de type mélange d'experts. Dans le chapitre 2, nous présentons un nouvel algorithme d'apprentissage profond qui utilise une forme simple d'apprentissage par renforcement sur un modèle d'arbre de décisions à base de réseau de neurones. Nous démontrons la nécessité d'une contrainte d'équilibre pour maintenir la distribution d'exemples aux experts uniforme et empêcher les monopoles. Pour rendre le calcul efficient, l'entrainement et l'évaluation sont contraints à être éparse en utilisant un routeur échantillonnant des experts d'une distribution multinomiale étant donné un exemple. Dans le chapitre 3, nous présentons un nouveau modèle profond constitué d'une représentation éparse divisée en segments d'experts. Un modèle de langue à base de réseau de neurones est construit à partir des transformations éparses entre ces segments. L'opération éparse par bloc est implémentée pour utilisation sur des cartes graphiques. Sa vitesse est comparée à deux opérations denses du même calibre pour démontrer le gain réel de calcul qui peut être obtenu. Un modèle profond utilisant des opérations éparses contrôlées par un routeur distinct des experts est entraîné sur un ensemble de données d'un milliard de mots. Un nouvel algorithme de partitionnement de données est appliqué sur un ensemble de mots pour hiérarchiser la couche de sortie d'un modèle de langage, la rendant ainsi beaucoup plus efficiente. Le travail présenté dans cette thèse est au centre de la vision de calcul conditionnel distribué émis par Yoshua Bengio. Elle tente d'appliquer la recherche dans le domaine des mélanges d'experts aux modèles profonds pour améliorer leur vitesse ainsi que leur capacité d'optimisation. Nous croyons que la théorie et les expériences de cette thèse sont une étape importante sur la voie du calcul conditionnel distribué car elle cadre bien le problème, surtout en ce qui concerne la compétitivité des systèmes d'experts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During 1990's the Wavelet Transform emerged as an important signal processing tool with potential applications in time-frequency analysis and non-stationary signal processing.Wavelets have gained popularity in broad range of disciplines like signal/image compression, medical diagnostics, boundary value problems, geophysical signal processing, statistical signal processing,pattern recognition,underwater acoustics etc.In 1993, G. Evangelista introduced the Pitch- synchronous Wavelet Transform, which is particularly suited for pseudo-periodic signal processing.The work presented in this thesis mainly concentrates on two interrelated topics in signal processing,viz. the Wavelet Transform based signal compression and the computation of Discrete Wavelet Transform. A new compression scheme is described in which the Pitch-Synchronous Wavelet Transform technique is combined with the popular linear Predictive Coding method for pseudo-periodic signal processing. Subsequently,A novel Parallel Multiple Subsequence structure is presented for the efficient computation of Wavelet Transform. Case studies also presented to highlight the potential applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To ensure quality of machined products at minimum machining costs and maximum machining effectiveness, it is very important to select optimum parameters when metal cutting machine tools are employed. Traditionally, the experience of the operator plays a major role in the selection of optimum metal cutting conditions. However, attaining optimum values each time by even a skilled operator is difficult. The non-linear nature of the machining process has compelled engineers to search for more effective methods to attain optimization. The design objective preceding most engineering design activities is simply to minimize the cost of production or to maximize the production efficiency. The main aim of research work reported here is to build robust optimization algorithms by exploiting ideas that nature has to offer from its backyard and using it to solve real world optimization problems in manufacturing processes.In this thesis, after conducting an exhaustive literature review, several optimization techniques used in various manufacturing processes have been identified. The selection of optimal cutting parameters, like depth of cut, feed and speed is a very important issue for every machining process. Experiments have been designed using Taguchi technique and dry turning of SS420 has been performed on Kirlosker turn master 35 lathe. Analysis using S/N and ANOVA were performed to find the optimum level and percentage of contribution of each parameter. By using S/N analysis the optimum machining parameters from the experimentation is obtained.Optimization algorithms begin with one or more design solutions supplied by the user and then iteratively check new design solutions, relative search spaces in order to achieve the true optimum solution. A mathematical model has been developed using response surface analysis for surface roughness and the model was validated using published results from literature.Methodologies in optimization such as Simulated annealing (SA), Particle Swarm Optimization (PSO), Conventional Genetic Algorithm (CGA) and Improved Genetic Algorithm (IGA) are applied to optimize machining parameters while dry turning of SS420 material. All the above algorithms were tested for their efficiency, robustness and accuracy and observe how they often outperform conventional optimization method applied to difficult real world problems. The SA, PSO, CGA and IGA codes were developed using MATLAB. For each evolutionary algorithmic method, optimum cutting conditions are provided to achieve better surface finish.The computational results using SA clearly demonstrated that the proposed solution procedure is quite capable in solving such complicated problems effectively and efficiently. Particle Swarm Optimization (PSO) is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. From the results it has been observed that PSO provides better results and also more computationally efficient.Based on the results obtained using CGA and IGA for the optimization of machining process, the proposed IGA provides better results than the conventional GA. The improved genetic algorithm incorporating a stochastic crossover technique and an artificial initial population scheme is developed to provide a faster search mechanism. Finally, a comparison among these algorithms were made for the specific example of dry turning of SS 420 material and arriving at optimum machining parameters of feed, cutting speed, depth of cut and tool nose radius for minimum surface roughness as the criterion. To summarize, the research work fills in conspicuous gaps between research prototypes and industry requirements, by simulating evolutionary procedures seen in nature that optimize its own systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is an outcome of the investigations carried out on the development of an Artificial Neural Network (ANN) model to implement 2-D DFT at high speed. A new definition of 2-D DFT relation is presented. This new definition enables DFT computation organized in stages involving only real addition except at the final stage of computation. The number of stages is always fixed at 4. Two different strategies are proposed. 1) A visual representation of 2-D DFT coefficients. 2) A neural network approach. The visual representation scheme can be used to compute, analyze and manipulate 2D signals such as images in the frequency domain in terms of symbols derived from 2x2 DFT. This, in turn, can be represented in terms of real data. This approach can help analyze signals in the frequency domain even without computing the DFT coefficients. A hierarchical neural network model is developed to implement 2-D DFT. Presently, this model is capable of implementing 2-D DFT for a particular order N such that ((N))4 = 2. The model can be developed into one that can implement the 2-D DFT for any order N upto a set maximum limited by the hardware constraints. The reported method shows a potential in implementing the 2-D DF T in hardware as a VLSI / ASIC

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work is intended to study the following important aspects of document image processing and develop new methods. (1) Segmentation ofdocument images using adaptive interval valued neuro-fuzzy method. (2) Improving the segmentation procedure using Simulated Annealing technique. (3) Development of optimized compression algorithms using Genetic Algorithm and parallel Genetic Algorithm (4) Feature extraction of document images (5) Development of IV fuzzy rules. This work also helps for feature extraction and foreground and background identification. The proposed work incorporates Evolutionary and hybrid methods for segmentation and compression of document images. A study of different neural networks used in image processing, the study of developments in the area of fuzzy logic etc is carried out in this work

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antimicrobial peptides (AMPs) are humoral innate immune components of fishes that provide protection against pathogenic infections. Histone derived antimicrobial peptides are reported to actively participate in the immune defenses of fishes. Present study deals with identification of putative antimicrobial sequences from the histone H2A of sicklefin chimaera, Neoharriotta pinnata. A 52 amino acid residue termed Harriottin-1, a 40 amino acid Harriottin-2, and a 21 mer Harriottin-3 were identified to possess antimicrobial sequence motif. Physicochemical properties andmolecular structure ofHarriottins are in agreement with the characteristic features of antimicrobial peptides, indicating its potential role in innate immunity of sicklefin chimaera. The histone H2A sequence of sicklefin chimera was found to differ from previously reported histone H2A sequences. Phylogenetic analysis based on histone H2A and cytochrome oxidase subunit-1 (CO1) gene revealed N. pinnata to occupy an intermediate position with respect to invertebrates and vertebrates

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following the Majority Strategy in graphs, other consensus strategies, namely Plurality Strategy, Hill Climbing and Steepest Ascent Hill Climbing strategies on graphs are discussed as methods for the computation of median sets of pro¯les. A review of algorithms for median computation on median graphs is discussed and their time complexities are compared. Implementation of the consensus strategies on median computation in arbitrary graphs is discussed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the locally free class group of an order in a semisimple algebra over a number field is isomorphic to a certain ray class group. This description is then used to present an algorithm that computes the locally free class group. The algorithm is implemented in MAGMA for the case where the algebra is a group ring over the rational numbers.