933 resultados para enzyme extraction
Resumo:
Meadowsweet was extracted in water at a range of temperatures (60–100 °C), and the total phenols, tannins, quercetin, salicylic acid content and colour were analysed. The extraction of total phenols followed pseudo first-order kinetics, the rate constant (k) increased from 0.09 ± 0.02 min−1 to 0.44 ± 0.09 min−1, as the temperature increased from 60 to 100 °C. An increase in temperature from 60 to 100 °C increased the concentration of total phenols extracted from 39 ± 2 to 63 ± 3 mg g−1 gallic acid equivalents, although it did not significantly affect the proportion of tannin and non-tannin fractions. The extraction of quercetin and salicyclic acid from meadowsweet also followed pseudo first-order kinetics, the rate constant of both compounds increasing with an increase in temperature up until 90 °C. Therefore, the aqueous extraction of meadowsweet at temperatures at or above 90 °C for 15 min yields extracts high in phenols, which may be added to beverages.
Resumo:
The total phenols, apigenin 7-glucoside, turbidity and colour of extracts from dried chamomile flowers were studied with a view to develop chamomile extracts with potential anti-inflammatory properties for incorporation into beverages. The extraction of all constituents followed pseudo first-order kinetics. In general, the rate constant (k) increased as the temperature increased from 57 to 100 °C. The turbidity only increased significantly between 90 and 100 °C. Therefore, aqueous chamomile extracts had maximum total phenol concentration and minimum turbidity when extracted at 90 °C for 20 min. The effect of drying conditions on chamomile extracted using these conditions was determined. A significant reduction in phenol concentration, from 19.7 ± 0.5 mg/g GAE in fresh chamomile to 13 ± 1 mg/g GAE, was found only in the plant material oven-dried at 80 °C (p ⩽ 0.05). The biggest colour change was between fresh chamomile and that oven-dried at 80 °C, followed by samples air-dried. There was no significant difference in colour of material freeze-dried and oven-dried at 40 °C.
Resumo:
Background: Thiol isomerases are a family of endoplasmic reticulum enzymes which orchestrate redox-based modifications of protein disulphide bonds. Previous studies have identified important roles for the thiol isomerases PDI and ERp5 in the regulation of normal platelet function. Objectives: Recently, we demonstrated the presence of a further five thiol isomerases at the platelet surface. In this report we aim to report the role of one of these enzymes - ERp57 in the regulation of platelet function. Methods/Results: Using enzyme activity function blocking antibodies, we demonstrate a role for ERp57 in platelet aggregation, dense granule secretion, fibrinogen binding, calcium mobilisation and thrombus formation under arterial conditions. In addition to the effects of ERp57 on isolated platelets, we observe the presence of ERp57 in the developing thrombus in vivo. Furthermore the inhibition of ERp57 function was found to reduce laser-injury induced arterial thrombus formation in a murine model of thrombosis. Conclusions: These data suggest that ERp57 is important for normal platelet function and opens up the possibility that the regulation of platelet function by a range of cell surface thiol isomerases may represent a broad paradigm for the regulation of haemostasis and thrombosis.
Resumo:
Recently, probiotic fermented milk products have raised interest regarding their potential anti-hypertensive activity mainly due to the production of angiotensin-I-converting enzyme (ACE) inhibitory peptides. Ionic calcium released upon milk acidification during fermentation is also known to exert hypotensive activity. Thus, the main aim of this study was to screen probiotic strains for their ability to induce ACE-inhibitory activity upon fermentation of milk. The relationship of ACE-inhibitory activity percentage (ACEi%) with cell growth, pH, degree of hydrolysis and the concentration of ionic calcium released during the fermentation was also investigated. Compared with other lactic acid bacteria, Lactobacillus casei YIT 9029 and Bifidobacterium bifidum MF 20/5 were able to induce strong ACE-inhibitory activity. Furthermore, it was found that the ionic calcium released during milk fermentation could contribute to the ACE-inhibitory activity. These findings will contribute to the development of new probiotic dairy products with anti-hypertensive activity.
Resumo:
This paper examines the interaction of spatial and dynamic aspects of resource extraction from forests by local people. Highly cyclical and varied across space and time, the patterns of resource extraction resulting from the spatial–temporal model bear little resemblance to the patterns drawn from focusing either on spatial or temporal aspects of extraction alone. Ignoring this variability inaccurately depicts villagers’ dependence on different parts of the forest and could result in inappropriate policies. Similarly, the spatial links in extraction decisions imply that policies imposed in one area can have unintended consequences in other areas. Combining the spatial–temporal model with a measure of success in community forest management—the ability to avoid open-access resource degradation—characterizes the impact of incomplete property rights on patterns of resource extraction and stocks.
Resumo:
Four new 6,6′-bis(1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) ligands, which contain either additional alkyl groups on the pyridine rings or seven-membered aliphatic rings attached to the triazine rings, have been synthesized, and the effects of the additional alkyl substitution in the 4- and 4′-positions of the pyridine rings on their extraction properties with LnIII and AnIII cations in simulated nuclear waste solutions have been studied. The speciation of ligand 13 with some trivalent lanthanide nitrates was elucidated by 1H NMR spectroscopic titrations and ESI-MS. Although 13 formed both 1:1 and 1:2 complexes with LaIII and YIII, only 1:2 complexes were observed with EuIII and CeIII. Quite unexpectedly, both alkyl-substituted ligands 12 and 13 showed lower solubilities in certain diluents than the unsubstituted ligand CyMe4-BTBP. Compared to CyMe4-BTBP, alkyl-substitution was found to decrease the rates of metal-ion extraction of the ligands in both 1-octanol and cyclohexanone. A highly efficient (DAm > 10) and selective (SFAm/Eu > 90) extraction was observed for 12 and 13 in cyclohexanone and for 13 in 1-octanol in the presence of a phase-transfer agent. The implications of these results for the design of improved extractants for radioactive waste treatment are discussed.
Resumo:
Patterns of forest cover and forest degradation determine the size and types of ecosystem services forests provide. Particularly in low-income countries, nontimber forest product (NTFP) extraction by rural people, which provides important resources and income to the rural poor, contributes to the level and pattern of forest degradation. Although recent policy, particularly in Africa, emphasizes forest degradation, relatively little research describes the spatial aspects of NTFP collection that lead to spatial degradation patterns. This paper reviews both the spatial empirical work on NTFP extraction and related forest degradation patterns, and spatial models of behavior of rural people who extract NTFPs from forest. Despite the impact of rural people's behavior on resulting quantities and patterns of forest resources, spatial–temporal models/patterns rarely inform park siting and sizing decisions, econometric assessments of park effectiveness, development projects to support conservation, or REDD protocols. Using the literature review as a lens, we discuss the models' implications for these policies with particular emphasis on effective conservation spending and leakage.
Resumo:
There are many published methods available for creating keyphrases for documents. Previous work in the field has shown that in a significant proportion of cases author selected keyphrases are not appropriate for the document they accompany. This requires the use of such automated methods to improve the use of keyphrases. Often the keyphrases are not updated when the focus of a paper changes or include keyphrases that are more classificatory than explanatory. The published methods are all evaluated using different corpora, typically one relevant to their field of study. This not only makes it difficult to incorporate the useful elements of algorithms in future work but also makes comparing the results of each method inefficient and ineffective. This paper describes the work undertaken to compare five methods across a common baseline of six corpora. The methods chosen were term frequency, inverse document frequency, the C-Value, the NC-Value, and a synonym based approach. These methods were compared to evaluate performance and quality of results, and to provide a future benchmark. It is shown that, with the comparison metric used for this study Term Frequency and Inverse Document Frequency were the best algorithms, with the synonym based approach following them. Further work in the area is required to determine an appropriate (or more appropriate) comparison metric.
Resumo:
Angiotensin I-converting enzyme (ACE) inhibition is one of the mechanisms by which reduction in blood pressure is exerted. Whey proteins are a rich source of ACE inhibitory peptides and have shown a blood pressure reduction effect i.e. antihypertensive activity. The aim of this work was to develop a simplified process using a combination of adsorption and microfiltration steps for the production of hydrolysates from whey with high ACE inhibitory activity and potency; the latter was measured as the IC50, which is the peptide concentration required to reduce ACE activity by half. This process integrates the selective separation of β-lactoglobulin and casein derived peptides (CDP) from rennet whey and their hydrolysis, which results in partially pure, less complex hydrolysates with high bioactive potency. Hydrolysis was carried out with protease N ‘Amano’ in a thermostatically controlled membrane reactor operated in a batch mode. By applying the integrative approach it was possible to produce from the same feedstock two different hydrolysates that exhibited high ACE inhibition. One hydrolysate was mainly composed of casein-derived peptides with IC50= 285 μg/mL. In this hydrolysate we identified the well known potent ACE-I and anti-hypertensive tri-peptide Ile-Pro-Pro (IPP) and another novel octa-peptide Gln-Asp-Lys-Thr-Glu-Ile-Pro-Thr (QDKTEIPT). The second hydrolysate was mainly composed of β-lactoglobulin derived peptides with IC50=128 µg/mL. This hydrolysate contained a tetra-peptide (Ile-Ile-Ala-Glu) IIAE as one of the two major peptides. A further advantage to this process is that enzyme activity was substantially increased as enzyme product inhibition was reduced.
The impact of buffer zone size and management on illegal extraction, park protection and enforcement
Resumo:
Many protected areas or parks in developing countries have buffer zones at their boundaries to achieve the dual goals of protecting park resources and providing resource benefits to neighbouring people. Despite the prevalence of these zoning policies, few behavioural models of people’s buffer zone use inform the sizing and management of those zones. This paper uses a spatially explicit resource extraction model to examine the impact of buffer zone size and management on extraction by local people, both legal and illegal, and the impact of that extraction on forest quality in the park’s core and buffer zone. The results demonstrate trade-offs between the level of enforcement, the size of a buffer zone, and the amount of illegal extraction in the park; and describe implications for “enrichment” of buffer zones and evaluating patterns of forest degradation.
Resumo:
Several alkylated cyclohexanones were investigated as potential diluents for the selective extraction of Am(III) and Eu(III) from nitric acid solutions by the CyMe4-BTBP ligand. No significant extraction of either of the metal ions was observed for these diluents themselves. In the extractions from 1 M HNO3, 3-methylcyclohexanone and 4-methylcyclohexanone gave comparable results to cyclohexanone whereas in the extractions from 4 M HNO3, 2-methylcyclohexanone, 3-methylcyclohexanone and 4-methylcyclohexanone all gave superior results. For the monomethylated diluents, DAm and SFAm/Eu decreased in the order of alkyl substitution 2 > 4 ~ 3. However, alkyl substitution of cyclohexanone significantly slows down the extraction kinetics compared to cyclohexanone, and the position of alkyl substitution was found to play an important role in the solvents properties. 3-Methylcyclohexanone was identified as the most promising of the diluents.
Resumo:
The synthesis, lanthanide complexation and solvent extraction of An(III) and Ln(III) radiotracers from nitric acid solutions by a pre-organized, phenanthroline-derived bis-triazine ligand CyMe4-BTPhen are described. It was found that the ligand separated Am(III) and Cm(III) from the lanthanides with remarkably high efficiency, high selectivity, and faster extraction kinetics compared to its 2,2’-bipyridine counterpart CyMe4-BTBP. The origins of the ligands extraction properties were established by a combination of solvent extraction experiments, X-ray crystallography, kinetics and surface tension measurements and lanthanide NMR spectroscopy.
Resumo:
Neuropeptide signalling at the plasma membrane is terminated by neuropeptide degradation by cell-surface peptidases, and by beta-arrestin-dependent receptor desensitization and endocytosis. However, receptors continue to signal from endosomes by beta-arrestin-dependent processes, and endosomal sorting mediates recycling and resensitization of plasma membrane signalling. The mechanisms that control signalling and trafficking of receptors in endosomes are poorly defined. We report a major role for endothelin-converting enzyme-1 (ECE-1) in controlling substance P (SP) and the neurokinin 1 receptor (NK(1)R) in endosomes of myenteric neurones. ECE-1 mRNA and protein were expressed by myenteric neurones of rat and mouse intestine. SP (10 nM, 10 min) induced interaction of NK(1)R and beta-arrestin at the plasma membrane, and the SP-NK(1)R-beta-arrestin signalosome complex trafficked by a dynamin-mediated mechanism to ECE-1-containing early endosomes, where ECE-1 can degrade SP. After 120 min, NK(1)R recycled from endosomes to the plasma membrane. ECE-1 inhibitors (SM-19712, PD-069185) and the vacuolar H(+)ATPase inhibitor bafilomycin A(1), which prevent endosomal SP degradation, suppressed NK(1)R recycling by >50%. Preincubation of neurones with SP (10 nM, 5 min) desensitized Ca(2+) transients to a second SP challenge after 10 min, and SP signals resensitized after 60 min. SM-19712 inhibited NK(1)R resensitization by >90%. ECE-1 inhibitors also caused sustained SP-induced activation of extracellular signal-regulated kinases, consistent with stabilization of the SP-NK(1)R-beta-arrestin signalosome. By degrading SP and destabilizing endosomal signalosomes, ECE-1 has a dual role in controlling endocytic signalling and trafficking of the NK(1)R: promoting resensitization of G protein-mediated plasma membrane signalling, and terminating beta-arrestin-mediated endosomal signalling.
Resumo:
Neuropeptide signaling at the cell surface is regulated by metalloendopeptidases, which degrade peptides in the extracellular fluid, and beta-arrestins, which interact with G protein-coupled receptors (GPCRs) to mediate desensitization. beta-Arrestins also recruit GPCRs and mitogen-activated protein kinases to endosomes to allow internalized receptors to continue signaling, but the mechanisms regulating endosomal signaling are unknown. We report that endothelin-converting enzyme-1 (ECE-1) degrades substance P (SP) in early endosomes of epithelial cells and neurons to destabilize the endosomal mitogen-activated protein kinase signalosome and terminate signaling. ECE-1 inhibition caused endosomal retention of the SP neurokinin 1 receptor, beta-arrestins, and Src, resulting in markedly sustained ERK2 activation in the cytosol and nucleus, whereas ECE-1 overexpression attenuated ERK2 activation. ECE-1 inhibition also enhanced SP-induced expression and phosphorylation of the nuclear death receptor Nur77, resulting in cell death. Thus, endosomal ECE-1 attenuates ERK2-mediated SP signaling in the nucleus to prevent cell death. We propose that agonist availability in endosomes, here regulated by ECE-1, controls beta-arrestin-dependent signaling of endocytosed GPCRs.
Resumo:
BACKGROUND AND PURPOSE: The metalloendopeptidase endothelin-converting enzyme 1 (ECE-1) is prominently expressed in the endothelium where it converts big endothelin to endothelin-1, a vasoconstrictor peptide. Although ECE-1 is found in endosomes in endothelial cells, the role of endosomal ECE-1 is unclear. ECE-1 degrades the pro-inflammatory neuropeptide substance P (SP) in endosomes to promote recycling and re-sensitization of its neurokinin 1 (NK(1)) receptor. We investigated whether ECE-1 regulates NK(1) receptor re-sensitization and the pro-inflammatory effects of SP in the endothelium. EXPERIMENTAL APPROACH: We examined ECE-1 expression, SP trafficking and NK(1) receptor re-sensitization in human microvascular endothelial cells (HMEC-1), and investigated re-sensitization of SP-induced plasma extravasation in rats. KEY RESULTS: HMEC-1 expressed all four ECE-1 isoforms (a-d), and fluorescent SP trafficked to early endosomes containing ECE-1b/d. The ECE-1 inhibitor SM-19712 prevented re-sensitization of SP-induced Ca2+ signals in HMEC-1 cells. Immunoreactive ECE-1 and NK(1) receptors co-localized in microvascular endothelial cells in the rat. SP-induced extravasation of Evans blue in the urinary bladder, skin and ears of the rat desensitized when the interval between two SP injections was 10 min, and re-sensitized after 480 min. SM-19712 inhibited this re-sensitization. CONCLUSIONS AND IMPLICATIONS: By degrading endocytosed SP, ECE-1 promotes the recycling and re-sensitization of NK(1) receptors in endothelial cells, and thereby induces re-sensitization of the pro-inflammatory effects of SP. Thus, ECE-1 inhibitors may ameliorate the pro-inflammatory actions of SP.