996 resultados para electron cooling
Resumo:
A microelectronic parallel electron-beam lithography system using an array of field emitting microguns is currently being developed. This paper investigates the suitability of various carbon based materials for the electron source in this device, namely tetrahedrally bonded amorphous carbon (ta-C), nanoclustered carbon and carbon nanotubes. Ta-C was most easily integrated into a gated field emitter structure and various methods, such as plasma and heavy ion irradiation, were used to induce emission sites in the ta-C. However, the creation of such emission sites at desired locations appeared to be difficult/random in nature and thus the material was unsuitable for this application. In contrast, nanoclustered carbon material readily field emits with a high site density but the by-products from the deposition process create integration issues when using the material in a microelectronic gated structure. Carbon nanotubes are currently the most promising candidate for use as the emission source. We have developed a high yield and clean (amorphous carbon by-product free) PECVD process to deposit single free standing nanotubes at desired locations with exceptional uniformity in terms of nanotube height and diameter. Field emission from an array of nanotubes was also obtained. © 2001 Elsevier Science B.V.
Resumo:
Cold cathodes based on carbon nanotubes allow to produce a modulated electron beam. Using an array of vertically aligned CNs that exhibit an aspect ratio of about 200, we demonstrated the modulation of a high current density beam (∼ 1 A/cm2) at 1.5 and 32 GHz frequencies. Such CN cathodes are very promising for their use in a new generation of compact, highly efficient and low cost amplifiers that operate between 10 and 100 GHz. © 2007 IEEE.
Resumo:
The aim of this paper is to review our recent results on the growth and optimization of carbon nanotubes (CNTs) and CNT/Zinc Oxide nanostructures and present and discuss their suitability for various applications such as cold cathode electron sources for use in x-ray sources and lighting. ©2010 IEEE.
Resumo:
We predict by first-principles calculations that p-doped graphane is an electron-phonon superconductor with a critical temperature above the boiling point of liquid nitrogen. The unique strength of the chemical bonds between carbon atoms and the large density of electronic states at the Fermi energy arising from the reduced dimensionality give rise to a giant Kohn anomaly in the optical phonon dispersions and push the superconducting critical temperature above 90 K. As evidence of graphane was recently reported, and doping of related materials such as graphene, diamond, and carbon nanostructures is well established, superconducting graphane may be feasible.