973 resultados para electromagnetic valve
Resumo:
"March 1972."
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references.
Resumo:
Mode of access: Internet.
Resumo:
Cover title.
Resumo:
In this paper, we investigate transmission of electromagnetic wave through aperiodic dielectric multilayers. A generic feature shown is that the mirror symmetry in the system can induce the resonant transmission, which originates from the positional correlations (for example, presence of dimers) in the system. Furthermore, the resonant transmission can be manipulated at a specific wavelength by tuning aperiodic structures with internal symmetry. The theoretical results are experimentally proved in the optical observation of aperiodic SiO2/TiO2 multilayers with internal symmetry. We expect that this feature may have potential applications in optoelectric devices such as the wavelength division multiplexing system.
Resumo:
The advantages of antennas that can resemble the shape of the body to which they are attached are obvious. However, electromagnetic modeling of such unusually shaped antennas can be difficult. In this paper, the commercially available software SolidWorks(TM) is used for accurately drawing complex shapes in conjunction with the electromagnetic software FEKO(TM) to model the EM behavior of conformal antennas. The application of SolidWorks and custom-written software allows all the required information that forms the analyzed structure to be automatically inserted into FEKO, and gives the user complete control over the antenna being modeled. This approach is illustrated by a number of simulation examples of single, wideband, multi-band planar and curved patch antennas.
Resumo:
The precise evaluation of electromagnetic field (EMF) distributions inside biological samples is becoming an increasingly important design requirement for high field MRI systems. In evaluating the induced fields caused by magnetic field gradients and RF transmitter coils, a multilayered dielectric spherical head model is proposed to provide a better understanding of electromagnetic interactions when compared to a traditional homogeneous head phantom. This paper presents Debye potential (DP) and Dyadic Green's function (DGF)-based solutions of the EMFs inside a head-sized, stratified sphere with similar radial conductivity and permittivity profiles as a human head. The DP approach is formulated for the symmetric case in which the source is a circular loop carrying a harmonic-formed current over a wide frequency range. The DGF method is developed for generic cases in which the source may be any kind of RF coil whose current distribution can be evaluated using the method of moments. The calculated EMFs can then be used to deduce MRI imaging parameters. The proposed methods, while not representing the full complexity of a head model, offer advantages in rapid prototyping as the computation times are much lower than a full finite difference time domain calculation using a complex head model. Test examples demonstrate the capability of the proposed models/methods. It is anticipated that this model will be of particular value for high field MRI applications, especially the rapid evaluation of RF resonator (surface and volume coils) and high performance gradient set designs.
Resumo:
Two physiological assessments, electromagnetic articulography (EMA) and electropalatography (EPG), were used simultaneously to investigate the articulatory dynamics in an 18-year-old male with dysarthria 9 years following traumatic brain injury (TBI). Eight words consisting of /t, s, integral, k/ in word initial and word final positions were produced up to 10 times. A nonneurologically impaired male served as a control subject. Six parameters were analyzed using EMA: velocity, acceleration, deceleration, distance, duration, and motion path of tongue movements. Using EPG, the pattern and amount of tongue-to-palate contact and the duration of the closure/constriction phase of each consonant produced were assessed. Timing disturbances in the TBI speaker's speech were highlighted in perceptual assessments in the form of prolonged phonemes and a reduced speech rate. EMA analysis revealed that the approach and release phase durations of the consonant productions were within normal limits. Kinematic strategies such as decreased velocity and decreased distances traveled by the tongue, however, may have counterbalanced each other to produce these appropriate results. EPG examination revealed significantly longer closure/constriction phase periods, which may have contributed to the prolonged phonemes and reduced speech rate observed. The implications of these findings for the development of treatment programs for dysarthria subsequent to TBI will be highlighted.
Resumo:
This paper presents a finite-difference time-domain (FDTD) simulator for electromagnetic analysis and design applications in MRI. It is intended to be a complete FDTD model of an MRI system including all RF and low-frequency field generating units and electrical models of the patient. The pro-ram has been constructed in an object-oriented framework. The design procedure is detailed and the numerical solver has been verified against analytical solutions for simple cases and also applied to various field calculation problems. In particular, the simulator is demonstrated for inverse RF coil design, optimized source profile generation, and parallel imaging in high-frequency situations. The examples show new developments enabled by the simulator and demonstrate that the proposed FDTD framework can be used to analyze large-scale computational electromagnetic problems in modern MRI engineering. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
We evaluated the hydrodynamic performance of kangaroo aortic valve matrices (KMs) (19, 21, and 23 mm), as potential scaffolds in tissue valve engineering using a pulsatile left heart model at low and high cardiac outputs (COs) and heart rates (HRs) of 60 and 90 beats/min. Data were measured in two samples of each type, pooled in two CO levels (2.1 +/- 0.7 and 4.2 +/- 0.6 L/min; mean +/- standard errors on the mean), and analyzed using analysis of variance with CO level, HR, and valve type as fixed factors and compared to similar porcine matrices (PMs). Transvalvular pressure gradient (Delta P) was a function of HR (P < 0.001) and CO (P < 0.001) but not of valve type (P = 0.39). Delta P was consistently lower in KMs but not significantly different from PMs. The effective orifice area and performance index of kangaroo matrices was statistically larger for all sizes at both COs and HRs.
Resumo:
Multiple input multiple output (MIMO) wireless systems use multiple element antennas (MEAs) tit the transmitter (TX) and the receiver (RX) in order to offer improved information rates (capacity) over conventional single antenna systems in rich scattering environments. In this paper, an example of a simple MIMO system is considered in which both antennas and scattering objects is are formed by wire dipoles. Such it system can be analyzed in the strict electromagnetic (EM) sense and its capacity can be determined for varying array size, interelement spacing, and distributions of scatterers. The EM model of this MIMO system can be used to assess the validity of single- or double-bounce scattering models for mixed line of sight (LOS) and non-line of sight (NLOS) signal-propagation conditions. (c) 2006 Wiley Periodicals, Inc.
Resumo:
This article presents various novel and conventional planar electromagnetic bandgap (EBG)-assisted transmission lines. Both microstrip lines and coplanar waveguides (CPWs) are designed with circular, rectangular, annular, plus-sign and fractal-patterned EBGs and dumbbell-shaped defected ground structure (DGS). The dispersion characteristics and the slow-wave factors of the design are investigated. (c) 2006 Wiley Periodicals, Inc.
Resumo:
A 52-year-old male with idiopathic hypereosinophilic syndrome (HES) was transferred to our institution following the development of acute respiratory failure and shock. He had previously undergone tricuspid valve replacement with bioprosthetic valves on two occasions: the initial surgery for severe native tricuspid valve stenosis and the redo surgery for severe prosthetic valve stenosis and regurgitation. Conventional imaging assessment using transoesophageal echocardiography was suboptimal and comprehensive assessment of prosthetic valve function was aided by the use of intracardiac echocardiography (ICE). ICE provided high quality 2D imaging of the prosthesis demonstrating thrombus-like material coating the inner surfaces of the prosthetic valve stents effectively forming a tunnel-like obstruction. Unusual hemodynamics secondary to severe tricuspid stenosis were demonstrated by CW Doppler with intermittent signal fusion resulting from blunted respiratory variation in the markedly elevated right atrial pressure relative to right ventricular pressure. Successful balloon valvuloplasty was performed with ICE proving highly valuable in guiding balloon position as well as monitoring the efficacy of the subsequent inflations.