947 resultados para electrical conductivity of poly(p-phenylene sulfide)
Resumo:
PFG-NMR was used to study the chemical exchange of linear PHEMA having a range of molecular weights with water in DMSO containing varying quantities of water. The aim was to investigate the use of PFG-NMR to study chemical exchange between a polymer with exchangeable protons and a small fast diffusing molecule to provide insight into the conformation adopted by a polymer in solution. The experimental data were simulated closely for the two-site exchange case using the Bloch equations modified for chemical exchange and diffusion. The exchange rate could be used to detect changes in polymer conformation resulting from changes in the solvent. PHEMA of MW 10 000 showed significant time-dependent changes in exchange rate, resulting from preferential solvation of the OH sites by water, and subsequent conformational changes which altered accessibility of the OH sites to water. This behavior was not observed for larger MW PHEMA, which adopted a stable conformation immediately. Large changes in the exchange rate were not reflected in changes to the hydrodynamic radius, suggesting that a minimal overall change in the chain dimensions occurred. DMSO was found to be a poor solvent for PHEMA, which adopts a compact conformation in DMSO. This work has demonstrated that PFG-NMR is a sensitive method for detecting subtle changes in polymer conformation in polymers with exchangeable protons.
Resumo:
This thesis is concerned with the effect of polymer structure on miscibility of the three component blends based on poly(lactic acid) (PLA) with using blending techniques. The examination of novel PLA homologues (pre-synthesised poly(a-esters)), including a range of aliphatic and aromatic poly(a-esters) is an important aspect of the work. Because of their structural simplicity and similarity to PLA, they provide an ideal system to study the effect of polyester structures on the miscibility of PLA polymer blends. The miscibility behaviour of the PLA homologues is compared with other aliphatic polyesters (e.g. poly(e-caprolactone) (PCL), poly(hydroxybutyrate hydroxyvalerate) (P(HB-HV)), together with a series of cellulose-based polymers (e.g. cellulose acetate butyrate (CAB)). The work started with the exploration the technique used for preliminary observation of the miscibility of blends referred to as “a rapid screening method” and then the miscibility of binary blends was observed and characterised by percent transmittance together with the Coleman and Painter miscibility approach. However, it was observed that symmetrical structures (e.g. a1(dimethyl), a2(diethyl)) promote the well-packing which restrict their chains from intermingling into poly(L-lactide) (PLLA) chains and leads the blends to be immiscible, whereas, asymmetrical structures (e.g. a4(cyclohexyl)) behave to the contrary. a6(chloromethyl-methyl) should interact well with PLLA because of the polar group of chloride to form interactions, but it does not. It is difficult to disrupt the helical structure of PLLA. PLA were immiscible with PCL, P(HB-HV), or compatibiliser (e.g. G40, LLA-co-PCL), but miscible with CAB which is a hydrogen-bonded polymer. However, these binary blends provided a useful indication for the exploration the novel three component blends. In summary, the miscibility of the three-component blends are miscible even if only two polymers are miscible. This is the benefit for doing the three components blend in this thesis, which is not an attempt to produce a theoretical explanation for the miscibility of three components blend system.
Resumo:
A new poly(ethylene oxide)-tetraphenylalanine polymer-peptide conjugate has been prepared via a “click” reaction between an alkyne-modified peptide and an azide-terminated PEO oligomer. Self-assembled nanotubes are formed after dialysis of a THF solution of this polymer-peptide conjugate against water. The structure of these nanotubes has been probed by circular dichroism, IR, TEM, and SAXS. From these data, it is apparent that self-assembly involves the formation of antiparallel ß-sheets and p-p-stacking. Nanotubes are formed at concentrations between 2 and 10 mg mL-1. Entanglement between adjacent nanotubes occurs at higher concentrations, resulting in the formation of soft hydrogels. Gel strength increases at higher polymer-peptide conjugate concentration, as expected.
Resumo:
Two series of poly(ethylene oxide)-tetrapeptide conjugates have been prepared using a “Click” reaction between an alkyne-modified tetra(phenylalanine) or tetra(valine) and various azide-terminated poly(ethylene oxide) (PEO) oligomers. Three different PEO precursors were used to prepare these conjugates, with number-average molecular weights of 350, 1200, and 1800 Da. Assembly of mPEO-F4-OEt and mPEO-V4-OEt conjugates was achieved by dialysis of a THF solution of the conjugate against water or by direct aqueous rehydration of a thin film. The PEO length has a profound effect on the outcome of the self-assembly, with the F4 conjugates giving rise to nanotubes, fibers, and wormlike micelles, respectively, as the length of the PEO block is increased. For the V4 series, the propensity to form ß-sheets dominates, and hence, the self-assembled structures are reminiscent of those formed by peptides alone, even at the longer PEO lengths. Thus, this systematic study demonstrates that the self-assembly of PEO-peptides depends on both the nature of the peptides and the relative PEO block length.
Resumo:
A new instrument and method are described that allow the hydraulic conductivities of highly permeable porous materials, such as gravels in constructed wetlands, to be determined in the field. The instrument consists of a Mariotte siphon and a submersible permeameter cell with manometer take-off tubes, to recreate in-situ the constant head permeameter test typically used with excavated samples. It allows permeability to be measured at different depths and positions over the wetland. Repeatability obtained at fixed positions was good (normalised standard deviation of 1–4%), and results obtained for highly homogenous silica sand compared well when the sand was retested in a lab permeameter (0.32 mm.s–1 and 0.31 mm.s–1 respectively). Practical results have a ±30% associated degree of uncertainty because of the mixed effect of natural variation in gravel core profiles, and interstitial clogging disruption during insertion of the tube into the gravel. This error is small, however, compared to the orders of magnitude spatial variations detected. The technique was used to survey the hydraulic conductivity profile of two constructed wetlands in the UK, aged 1 and 15 years respectively. Measured values were high (up to 900 mm.s –1) and varied by three orders of magnitude, reflecting the immaturity of the wetland. Detailed profiling of the younger system suggested the existence of preferential flow paths at a depth of 200 mm, corresponding to the transition between more coarse and less coarse gravel layers (6–12 mm and 3–6 mm respectively), and transverse drift towards the outlet.
Resumo:
Nanometer-scale diamonds formed using a detonation process are an interesting class of diamond materials. Commercially supplied material is highly aggregated with ~ 5 nm diamond crystals forming particles with micron sizes. Previous models have suggested that nondiamond carbon is incorporated between the crystals, which would reduce the electrical and chemical usefulness of this form of diamond. However, using impedance spectroscopy we have shown that at temperatures below 350?°C the form of detonation nanodiamond being studied is a near to ideal dielectric, implying a full sp3 form. At temperatures above this the surfaces of the diamond crystals may support some nondiamond carbon
Resumo:
A new family of multifunctional scaffolds, incorporating selected biopolymer coatings on basic Bioglass® derived foams has been developed. The polymer coatings were investigated as carrier of vancomycin which is a suitable drug to impart antibiotic function to the scaffolds. It has been proved that coating with PLGA (poly(lactic-co-glycolic acid)) with dispersed vancomycin-loaded microgels provides a rapid delivery of drug to give antibacterial effects at the wound site and a further sustained release to aid mid to long-term healing. Furthermore, the microgels also improved the bioactivity of the scaffolds by acting as nucleation sites for the formation of HA crystals in simulated body fluid. © 2013 Elsevier B.V. All rights reserved.
Resumo:
A series of novel block copolymers, processable from single organic solvents and subsequently rendered amphiphilic by thermolysis, have been synthesized using Grignard metathesis (GRIM) and reversible addition-fragmentation chain transfer (RAFT) polymerizations and azide-alkyne click chemistry. This chemistry is simple and allows the fabrication of well-defined block copolymers with controllable block lengths. The block copolymers, designed for use as interfacial adhesive layers in organic photovoltaics to enhance contact between the photoactive and hole transport layers, comprise printable poly(3-hexylthiophene)-block-poly(neopentyl p-styrenesulfonate), P3HT-b-PNSS. Subsequently, they are converted to P3HT-b-poly(p-styrenesulfonate), P3HT-b-PSS, following deposition and thermal treatment at 150 °C. Grazing incidence small- and wide-angle X-ray scattering (GISAXS/GIWAXS) revealed that thin films of the amphiphilic block copolymers comprise lamellar nanodomains of P3HT crystallites that can be pushed further apart by increasing the PSS block lengths. The approach of using a thermally modifiable block allows deposition of this copolymer from a single organic solvent and subsequent conversion to an amphiphilic layer by nonchemical means, particularly attractive to large scale roll-to-roll industrial printing processes.
Resumo:
The electrocopolymerization of carbazole and acrylamide on highly oriented pyrolytic graphite (HOPG) from ACN solutions via cyclovoltammetry (CV) was studied in order to evaluate the possibility to deposit uniform and thin but pinhole-free and still reactive coatings onto graphite-like substrates. The morphology of the coatings was investigated using atomic force microscopy and the coating thicknesses and optical parameters were measured using ellipsometry. It was found that under the chosen conditions thin (coating thickness hf>180 nm) and relatively smooth (root mean square surface roughness RMS<150 nm) P(Cz-co-AAm)-coatings exhibiting a uniform globuoidal morphology can be deposited onto graphite. From a certain coating thickness (hf>50 nm) no pinholes could be detected. It was found that the thickness of the deposited coatings increases almost linearly with increasing number of CV-cycles while keeping all other experimental parameters (scan rate and comonomer concentration ratio) constant. No influence of the comonomer concentration ratio on the film thickness and coating appearance could be observed, however, at quite low initial concentrations. However, the CV-scanning rate has quite a significant influence on the thickness of the deposited coatings. Higher scan rates (100 mV/s) result in thin (hf≈22 nm) coatings whereas at lower scan rates (<50 mV/s) coatings with thicknesses of approximately 50 nm were obtained. The optical coating parameters (the refractive index n and extinction coefficient k) seem to be independent of the deposition parameters and therefore averaged values of n̄=1.54±0.03 and k̄=0.08±0.03 were obtained.
Resumo:
Purpose: We have reported that the changes in the pupillary shape in response to electrical stimulation of the branches of the ciliary nerves in cats. (Miyagawa et al. PLoS One, 2014). This study investigates the changes in the pupillary shapes in response to electrical stimulations of the sclera of peripheral cornea in cats and porcines. Methods: Two enucleated eyes of two cats and three enucleated porcine eyes were studied. Trains of biphasic pulses (current, 3 mA; duration, 2 ms/phase; frequency, 40 Hz) were applied using a tungsten electrode (0.3mm diameter). The stimulation was performed at every 45 degree over the entire circular region on the sclera near the cornea. The pupillary images were recorded before and 4 s (cat) and 10 s (pig) after the stimulation and the change in the pupil diameter (Δr) was quantified. The pupillary images were obtained with a custom-built compact wavefront aberrometer (Uday et al. J Cataract Refract Surg, 2013). Results: In a cat eye, the pupil was dilated by the electrical stimulation at six out of eight orientations (before stimulation pupil diameter r=10.10±0.49 mm, Δr=0.33±0.12 mm). The pupil dilated only toward the electrode (relative eccentricity of the pupil center to the pupil diameter change amount rdec=1.15±0.28). In the porcine eyes, the pupils were constricted by the electrical stimulations at the temporal and nasal orientations (r=10.04±0.57 mm, Δr=1.52±0.70 mm). The pupils contracted symmetrically (rdec=0.30±0.12). Conclusions: With electrical stimulation in the sclera of the peripheral cornea, asymmetric mydriasis in cat eyes and symmetrical miosis in porcine eyes were observed. Under the assumption that the electrical stimulation stimulated both muscles that contribute to the pupil control, our hypothesis proposed here is that the pupil dilator is stronger than the pupil sphincter in cat, and pupil sphincter is stronger than pupil dilator in porcine.
Resumo:
Purpose: We have reported that the changes in the accommodative response to electrical stimulation of the branches of the ciliary nerves in cats. (Miyagawa et al, PLoS One, 2014). We have also reported that no robust accommodative responses to the electrical stimulations of the sclera of peripheral cornea (SSPC) were observed in enucleated porcine eyes (Mihashi et al, VPOptics, 2014). In this study, accommodative responses to SSPC stimulation in cats and porcines were investigated. Methods: Two eyes of two cats under anesthesia and after they were sacrificed were studied. Three enucleated porcine eyes obtained from a local slaughterhouse were also studied. Trains of biphasic pulses (current, 3 mA; duration, 2 ms/phase; frequency, 40 Hz) were applied using a tungsten electrode (0.3mm diameter) from several orientations. Wavefront sensing with a compact wavefront aberrometer (Uday et al J Cataract Refract Surg, 2013) were performed before and 4 s (cat) and 10 s (pig) after the stimulations and wavefront aberrations including spherical errors were analyzed over a 4-mm pupil area. Results: In the first cat under anesthesia, at three out of seven stimulus positions, 0.2 D hyperopic accommodative responses were observed and in two orientations, myopic responses were observed. For the other cat, weak accommodative responses including astigmatic changes were observed. In the sacrificed condition of the second cat, 0.1 D myopic response was observed for one stimulus orientation and the smaller responses were observed at six out of eight stimulus positions. No accommodative responses were elicited for the enucleated porcine eyes. Conclusions: In the anesthetized cats, electrical stimulation of the SSPC induced accommodative responses; the responses were unstable and weaker than the responses by the ciliary nerve stimulations we observed in our previous study. Small accommodative responses were observed after one of two cats had been sacrificed, but no accommodative responses were detected in the enucleated porcine eyes. Further studies are needed to confirm difference in the accommodation functions in the two species.