968 resultados para drug inhibition
Resumo:
We report here the investigation of a novel description of specificity in protein-ligand binding based on energy landscape theory. We define a new term, intrinsic specificity ratio (ISR), which describes the level of discrimination in binding free energies of the native basin for a protein-ligand complex from the weaker binding states of the same ligand. We discuss the relationship between the intrinsic specificity we defined here and the conventional definition of specificity. In a docking study of molecules with the enzyme COX-2, we demonstrate a statistical correspondence between ISR value and geometrical shapes of the small molecules binding to COX-2. We further observe that the known selective (nonselective) inhibitors of COX-2 have higher (lower) ISR values. We suggest that intrinsic specificity ratio may be a useful new criterion and a complement to affinity in drug screening and in searching for potential drug lead compounds.
Resumo:
Luminescence functionalization of the ordered mesoporous SBA-15 silica was realized by depositing a YVO4:Eu3+ phosphor layer on its surface via the Pechini sol-gel process, resulting in the formation of the YVO4:Eu3+@SBA-15 composite material. This material, which combines the mesoporous structure of SBA-15 and the strong red luminescence property of YVO4:Eu3+, can be used as a novel functional drug delivery system. The structure, morphology, porosity, and optical properties of the materials were well characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, N-2 adsorption, and photoluminescence spectra. As expected, the pore volume, surface area, and pore size of SBA-15 decrease in sequence after deposition of the YVO4:Eu3+ layer and the adsorption of ibuprofen (IBU, drug). The IBU-loaded YVO4:Eu3+@SBA-15 system still shows the red emission of Eu3+ (617 nm, D-5(0)-F-7(2)) under UV irradiation and the controlled drug release property. Additionally, the emission intensity of Eu3+ increases with an increase in the cumulative released amount of IBU in the system, making the extent of drug release easily identifiable, trackable, and monitorable by the change of luminescence. The system has great potential in the drug delivery and disease therapy fields.
Resumo:
Luminescence functionalization of ordered mesoporous MCM-41 silica was realized by depositing a YVO4:Eu3+ phosphor layer on its surface via the Pechini sol-gel process. This material, which combines the mesoporous structure of MCM-41 and the strong red luminescence property of YVO4: Eu3+, has been studied as a host carrier for drug delivery/release systems. The structure, morphology, texture and optical properties of the materials were well characterized by x-ray diffraction ( XRD), Fourier infrared spectroscopy ( FT-IR), transmission electron microscopy ( TEM), N-2 adsorption and photoluminescence ( PL) spectra. The results indicated that the specific surface area and pore volume of MCM-41, which were directly correlated to the drug-loading amount and ibuprofen ( IBU) release rate, decreased in sequence after deposition of YVO4:Eu3+ and loading of IBU as expected. The IBU-loaded YVO4:Eu3+@ MCM-41 system still showed red luminescence under UV irradiation ( 365 nm) and a controlled release property for IBU. In addition, the emission intensity of Eu3+ increases with an increase in the cumulative released amount of IBU, making the extent of drug release easily identified, tracked and monitored by the change of luminescence, which demonstrates its potential application in drug delivery/release systems.
Resumo:
We report on the development of a new class of kinase microarray for the detection of kinase inhibition based on marking peptide phosphorylation/biotinylation events by attachment of gold nanoparticles followed by silver deposition for signal enhancement. The alpha-catalytic subunit of cyclic adenosine 5'-monophosphate-dependent protein kinase (PKA), and its well-known substrate, kemptide, were used for the purpose of monitoring phosphorylation and inhibition. As expected, highly selective inhibition of PKA is demonstrated with the four inhibitors: H89, HA1077, mallotoxin, and KN62. Furthermore, an inhibition assay demonstrates the ability to detect kinase inhibition as well as derive IC50 (half-maximal inhibitory concentration) plots.
Resumo:
The interaction of daunomycin with sodium dodecyl sulfate and Triton X-100 micelles was investigated as a model for the hydrophobic contribution to the free energy of DNA intercalation reactions. Measurements of visible absorbance, fluorescence lifetime, steady-state fluorescence emission intensity, and fluorescence anisotropy indicate that the anthraquinone ring partitions into the hydrophobic micelle interior. Fluorescence quenching experiments using both steady-state and lifetime measurements demonstrate reduced accessibility of daunomycin in sodium dodecyl sulfate micelles to the anionic quencher iodide and to the neutral quencher acrylamide. Quenching of daunomycin fluorescence by iodide in Triton X-100 micelles was similar to that seen with free daunomycin. Studies of the energetics of the interaction of daunomycin with micelles by fluorescence and absorbance titration methods and by isothermal titration calorimetry in the presence of excess micelles revealed that association with sodium dodecyl sulfate and Triton X-100 micelles is driven by a large negative enthalpy. Association of the drug with both types of micelles also has a favorable entropic contribution, which is larger in magnitude for Triton X-100 micelles than for sodium dodecyl sulfate micelles.
Resumo:
A new technique for investigating drug-protein binding was developed employing capillary electrophoresis (CE) coupled with tris(2,2'-bipyridyl) ruthenium(II) [Ru(bPY)(3)(2+)] electrochemiluminescence (ECL) (CE-ECL) detection after equilibrium dialysis. Three basic drugs, namely pridinol, procyclidine and its analogue trihexyphenidyl, were successfully separated by capillary zone electrophoresis with end-column Ru(bPY)(3)(2+) ECL detection. The relative drug binding to human serum albumin (HSA) for each single drug as well'as for the three drugs binding simultaneously was calculated. It was found that the three antiparkinsonian drugs compete for the same binding site on HSA. This work demonstrated that Ru(bPY)(3)(2+) CE-ECL can be a suitable technique for studying drug-protein binding.
Resumo:
The effect of the context of the flanking sequence on ligand binding to DNA oligonucleotides that contain consensus binding sites was investigated for the binding of the intercalator 7-amino actinomycin D. Seven self-complementary DNA oligomers each containing a centrally located primary binding site, 5'-A-G-C-T-3', flanked on either side by the sequences (AT)(n) or (AA)(n) (with n = 2, 3, 4) and AA(AT)(2), were studied. For different flanking sequences, (AA)(n)-series or (AT)(n)-series, differential fluorescence enhancements of the ligand due to binding were observed. Thermodynamic studies indicated that the flanking sequences not only affected DNA stability and secondary structure but also modulated ligand binding to the primary binding site. The magnitude of the ligand binding affinity to the primary site was inversely related to the sequence dependent stability. The enthalpy of ligand binding was directly measured by isothermal titration calorimetry, and this made it possible to parse the binding free energy into its energetic and entropic terms.
Resumo:
We explored the CE with Ru(bpy)(3)(2+) electrochemiluminescence detection for the kinetic study of drug-enzyme interaction. Effects of four nonsteroidal anti - inflammatory drugs including aspirin, paracetamol, sodium salicylate and phenacetin on prolidase (PLD) activity in erythrocytes were investigated. Aspirin enhanced PLD activity whereas the other three had inhibiting effects. This may reveal their different effects on the collagen biosynthesis and catabolism that influence tumor invasiveness. Kinetic study of paracetamol on PLD showed that the value of Michaelis constant Km for PLD was 1.23 mM. The mechanism of PLD inhibition by paracetamol is noncompetitive inhibition, and the inhibitor constant K-i value obtained in our research was 9.73 x 10(3) mu g/L.
Resumo:
By addition of a small amount of poly(methyl methacrylate) (PMMA) into polystyrene (PS), we present a novel approach to inhibit the dewetting process of thin PS film through phase separation of the off-critical polymer mixture (PS/PMMA). Owing to the preferential segregation of PMMA to the solid SiOx substrate, a nanometer thick layer, rich in PMMA phase, is formed. It is this diffusive PMMA-rich phase layer near the substrate that alters the dewetting behavior of the PS film. The degree of inhibition of dewetting depends on the concentration and molecular weight of PMMA component. PMMA with low (15.9k) and intermediate (102.7k) molecular weight stabilizes the films more effectively than that with a higher molecular weight (387k).
Resumo:
The influences of surfactants and medical drugs on the diameter size and uniformity of electrospun poly(L-lactic acid) (PLLA) fibers were examined by adding various surfactants (cationic, anionic, and nonionic) and typical drugs into the PLLA solution. Significant diameter reduction and uniformity improvement were observed. It was shown that the drugs were capsulated inside of the fibers and the drug release in the presence of proteinase K followed nearly zero-order kinetics due to the degradation of the PLLA fibers. Such ultrafine fiber mats containing drugs may find clinical applications in the future.
Resumo:
Using the Langmuir-Blodgett (LB) technique, stearic acid (SA) monolayers were deposited onto the surface of an iron (Fe) electrode to study the inhibition effect and the mechanism of SA in a neutral medium. Molecular orientation and the number of deposited monolayers of SA were shown to have marked effects on inhibition of Fe corrosion. The inhibition mechanism depended mainly on blocking.
Resumo:
Langmuir-Blodgett (LB) monolayers of hexadecyl trimethyl ammonium bromide (HTAB) were deposited onto a carbon steel surface to investigate the inhibition of corrosion by measurement of the polarization resistance and cyclic voltammetry. The corrosion proc