957 resultados para distance function
Resumo:
A Finite Feedback Scheme (FFS) for a quasi-static MIMO block fading channel with finite N-ary delay-free noise-free feedback consists of N Space-Time Block Codes (STBCs) at the transmitter, one corresponding to each possible value of feedback, and a function at the receiver that generates N-ary feedback. A number of FFSs are available in the literature that provably attain full-diversity. However, there is no known full-diversity criterion that universally applies to all FFSs. In this paper a universal necessary condition for any FFS to achieve full-diversity is given, and based on this criterion the notion of Feedback-Transmission duration optimal (FT-optimal) FFSs is introduced, which are schemes that use minimum amount of feedback N for the given transmission duration T, and minimum T for the given N to achieve full-diversity. When there is no feedback (N = 1) an FT-optimal scheme consists of a single STBC, and the proposed condition reduces to the well known necessary and sufficient condition for an STBC to achieve full-diversity. Also, a sufficient criterion for full-diversity is given for FFSs in which the component STBC yielding the largest minimum Euclidean distance is chosen, using which full-rate (N-t complex symbols per channel use) full-diversity FT-optimal schemes are constructed for all N-t > 1. These are the first full-rate full-diversity FFSs reported in the literature for T < N-t. Simulation results show that the new schemes have the best error performance among all known FFSs.
Resumo:
Given a metric space with a Borel probability measure, for each integer N, we obtain a probability distribution on N x N distance matrices by considering the distances between pairs of points in a sample consisting of N points chosen independently from the metric space with respect to the given measure. We show that this gives an asymptotically bi-Lipschitz relation between metric measure spaces and the corresponding distance matrices. This is an effective version of a result of Vershik that metric measure spaces are determined by associated distributions on infinite random matrices.
Resumo:
Global efforts in macromolecular crystallography started in the thirties of the last century. However, definitive results began to emerge only in the late fifties and the early sixties. India has a long tradition in crystallography. The country had a head start in theoretical and computational structural biology, thanks to the efforts of G.N. Ramachandran and his colleagues in the fifties and the sixties. However, macromolecular crystallography got off the ground in India only in the eighties, particularly after the Bangalore group received adequate support from the Department of Science and Technology under their Thrust Area Programme. The Bangalore centre was also identified as a national nucleus for the development of the area in the country. Since then work in the area has spread widely and is being carried out by several groups, mainly led by scientists trained at Bangalore or their descendents, in about thirty institutions in India. In addition to the Department of Science and Technology, the effort is now supported by other agencies like the Department of Biotechnology and the Council of Scientific and Industrial Research. The problems addressed by macromolecular crystallographers in India encompass almost all aspects of modern biology. Indian efforts in macromolecular crystallography have also become an important component of the international efforts in the area.
Resumo:
We apply to total cross-sections our model for soft gluon resummation in the infrared region. The model aims to probe large distance interactions in QCD. Our ansatz for an effective coupling for gluons and quarks in the infrared region follows an inverse power law which is singular but integrable. In the context of an eikonal formalism with QCD mini-jets, we study total hadronic cross-sections for protons, pions, photons. We estimate the total inelastic cross-section at LHC comparing with recent measurements and update previous results for survival probability.
Resumo:
We extend our analysis of transverse single spin asymmetry in electroproduction of J/ψ to include the effect of the scale evolution of the transverse momentum dependent (TMD) parton distribution functions and gluon Sivers function. We estimate single spin asymmetry for JLab, HERMES, COMPASS, and eRHIC energies using the color evaporation model of charmonium production, using an analytically obtained approximate solution of TMD evolution equations discussed in the literature. We find that there is a reduction in the asymmetry compared with our predictions for the earlier case considered by us, wherein the Q2 dependence came only from DGLAP evolution of the unpolarized gluon densities and a different parametrization of the TMD Sivers function was used.
Resumo:
The increasing number of available protein structures requires efficient tools for multiple structure comparison. Indeed, multiple structural alignments are essential for the analysis of function, evolution and architecture of protein structures. For this purpose, we proposed a new web server called multiple Protein Block Alignment (mulPBA). This server implements a method based on a structural alphabet to describe the backbone conformation of a protein chain in terms of dihedral angles. This sequence-like' representation enables the use of powerful sequence alignment methods for primary structure comparison, followed by an iterative refinement of the structural superposition. This approach yields alignments superior to most of the rigid-body alignment methods and highly comparable with the flexible structure comparison approaches. We implement this method in a web server designed to do multiple structure superimpositions from a set of structures given by the user. Outputs are given as both sequence alignment and superposed 3D structures visualized directly by static images generated by PyMol or through a Jmol applet allowing dynamic interaction. Multiple global quality measures are given. Relatedness between structures is indicated by a distance dendogram. Superimposed structures in PDB format can be also downloaded, and the results are quickly obtained. mulPBA server can be accessed at www.dsimb.inserm.fr/dsimb_tools/mulpba/.
Resumo:
The poison gland and Dufour's gland are the two glands associated with the sting apparatus in female Apocrita (Hymenoptera). While the poison gland usually functions as an integral part of the venom delivery system, the Dufour's gland has been found to differ in its function in various hymenopteran groups. Like all exocrine glands, the function of the Dufour's gland is to secrete chemicals, but the nature and function of the secretions varies in different taxa. Functions of the Dufour's gland secretions range from serving as a component of material used in nest building, larval food, and pheromones involved in communicative functions that are important for both solitary and social species. This review summarizes the different functions reported for the Dufour's gland in hymenopterans, illustrating how the Dufour's gland secretions can be adapted to give rise to various functions in response to different challenges posed by the ways of life followed by different taxa. Aspects of development, structure, chemistry and the evolution of different functions are also touched upon briefly.
Resumo:
The basic requirement for an autopilot is fast response and minimum steady state error for better guidance performance. The highly nonlinear nature of the missile dynamics due to the severe kinematic and inertial coupling of the missile airframe as well as the aerodynamics has been a challenge for an autopilot that is required to have satisfactory performance for all flight conditions in probable engagements. Dynamic inversion is very popular nonlinear controller for this kind of scenario. But the drawback of this controller is that it is sensitive to parameter perturbation. To overcome this problem, neural network has been used to capture the parameter uncertainty on line. The choice of basis function plays the major role in capturing the unknown dynamics. Here in this paper, many basis function has been studied for approximation of unknown dynamics. Cosine basis function has yield the best response compared to any other basis function for capturing the unknown dynamics. Neural network with Cosine basis function has improved the autopilot performance as well as robustness compared to Dynamic inversion without Neural network.
Resumo:
In addition to the chemical nature of the surface, the dimensions of the confining host exert a significant influence on confined protein structures; this results in immense biological implications, especially those concerning the enzymatic activities of the protein. This study probes the structure of hemoglobin (Hb), a model protein, confined inside silica tubes with pore diameters that vary by one order of magnitude (approximate to 20-200 nm). The effect of confinement on the protein structure is probed by comparison with the structure of the protein in solution. Small-angle neutron scattering (SANS), which provides information on protein tertiary and quaternary structures, is employed to study the influence of the tube pore diameter on the structure and configuration of the confined protein in detail. Confinement significantly influences the structural stability of Hb and the structure depends on the Si-tube pore diameter. The high radius of gyration (R-g) and polydispersity of Hb in the 20 nm diameter Si-tube indicates that Hb undergoes a significant amount of aggregation. However, for Si-tube diameters greater or equal to 100 nm, the R-g of Hb is found to be in very close proximity to that obtained from the protein data bank (PDB) reported structure (R-g of native Hb=23.8 angstrom). This strongly indicates that the protein has a preference for the more native-like non-aggregated state if confined inside tubes of diameter greater or equal to 100 nm. Further insight into the Hb structure is obtained from the distance distribution function, p(r), and ab initio models calculated from the SANS patterns. These also suggest that the Si-tube size is a key parameter for protein stability and structure.
Resumo:
We analytically evaluate the large deviation function in a simple model of classical particle transfer between two reservoirs. We illustrate how the asymptotic long-time regime is reached starting from a special propagating initial condition. We show that the steady-state fluctuation theorem holds provided that the distribution of the particle number decays faster than an exponential, implying analyticity of the generating function and a discrete spectrum for its evolution operator.
Resumo:
We generalize the method of A. M. Polyakov, Phys. Rev. E 52, 6183 (1995)] for obtaining structure-function relations in turbulence in the stochastically forced Burgers equation, to develop structure-function hierarchies for turbulence in three models for magnetohydrodynamics (MHD). These are the Burgers analogs of MHD in one dimension Eur. Phys. J.B 9, 725 (1999)], and in three dimensions (3DMHD and 3D Hall MHD). Our study provides a convenient and unified scheme for the development of structure-function hierarchies for turbulence in a variety of coupled hydrodynamical equations. For turbulence in the three sets of MHD equations mentioned above, we obtain exact relations for third-order structure functions and their derivatives; these expressions are the analogs of the von Karman-Howarth relations for fluid turbulence. We compare our work with earlier studies of such relations in 3DMHD and 3D Hall MHD.
Resumo:
Mitochondria are indispensable organelles implicated in multiple aspects of cellular processes, including tumorigenesis. Heat shock proteins play a critical regulatory role in accurately delivering the nucleus-encoded proteins through membrane-bound presequence translocase (Tim23 complex) machinery. Although altered expression of mammalian presequence translocase components had been previously associated with malignant phenotypes, the overall organization of Tim23 complexes is still unsolved. In this report, we show the existence of three distinct Tim23 complexes, namely, B1, B2, and A, involved in the maintenance of normal mitochondrial function. Our data highlight the importance of Magmas as a regulator of translocase function and in dynamically recruiting the J-proteins DnaJC19 and DnaJC15 to individual translocases. The basic housekeeping function involves translocases B1 and B2 composed of Tim17b isoforms along with DnaJC19, whereas translocase A is nonessential and has a central role in oncogenesis. Translocase B, having a normal import rate, is essential for constitutive mitochondrial functions such as maintenance of electron transport chain complex activity, organellar morphology, iron-sulfur cluster protein biogenesis, and mitochondrial DNA. In contrast, translocase A, though dispensable for housekeeping functions with a comparatively lower import rate, plays a specific role in translocating oncoproteins lacking presequence, leading to reprogrammed mitochondrial functions and hence establishing a possible link between the TIM23 complex and tumorigenicity.
Resumo:
Classification of pharmacologic activity of a chemical compound is an essential step in any drug discovery process. We develop two new atom-centered fragment descriptors (vertex indices) - one based solely on topological considerations without discriminating atomor bond types, and another based on topological and electronic features. We also assess their usefulness by devising a method to rank and classify molecules with regard to their antibacterial activity. Classification performances of our method are found to be superior compared to two previous studies on large heterogeneous data sets for hit finding and hit-to-lead studies even though we use much fewer parameters. It is found that for hit finding studies topological features (simple graph) alone provide significant discriminating power, and for hit-to-lead process small but consistent improvement can be made by additionally including electronic features (colored graph). Our approach is simple, interpretable, and suitable for design of molecules as we do not use any physicochemical properties. The singular use of vertex index as descriptor, novel range based feature extraction, and rigorous statistical validation are the key elements of this study.
Resumo:
In this paper we establish that the Lovasz theta function on a graph can be restated as a kernel learning problem. We introduce the notion of SVM-theta graphs, on which Lovasz theta function can be approximated well by a Support vector machine (SVM). We show that Erdos-Renyi random G(n, p) graphs are SVM-theta graphs for log(4)n/n <= p < 1. Even if we embed a large clique of size Theta(root np/1-p) in a G(n, p) graph the resultant graph still remains a SVM-theta graph. This immediately suggests an SVM based algorithm for recovering a large planted clique in random graphs. Associated with the theta function is the notion of orthogonal labellings. We introduce common orthogonal labellings which extends the idea of orthogonal labellings to multiple graphs. This allows us to propose a Multiple Kernel learning (MKL) based solution which is capable of identifying a large common dense subgraph in multiple graphs. Both in the planted clique case and common subgraph detection problem the proposed solutions beat the state of the art by an order of magnitude.
Resumo:
This paper investigates a novel approach for point matching of multi-sensor satellite imagery. The feature (corner) points extracted using an improved version of the Harris Corner Detector (HCD) is matched using multi-objective optimization based on a Genetic Algorithm (GA). An objective switching approach to optimization that incorporates an angle criterion, distance condition and point matching condition in the multi-objective fitness function is applied to match corresponding corner-points between the reference image and the sensed image. The matched points obtained in this way are used to align the sensed image with a reference image by applying an affine transformation. From the results obtained, the performance of the image registration is evaluated and compared with existing methods, namely Nearest Neighbor-Random SAmple Consensus (NN-Ran-SAC) and multi-objective Discrete Particle Swarm Optimization (DPSO). From the performed experiments it can be concluded that the proposed approach is an accurate method for registration of multi-sensor satellite imagery. (C) 2014 Elsevier Inc. All rights reserved.