859 resultados para dimensional compactification
Resumo:
The spectrum of linearized excitations of the Type IIB SUGRA on AdS(5) x S-5 contains both unitary and non-unitary representations. Among the non-unitary, some are finite-dimensional. We explicitly construct the pure spinor vertex operators for a family of such finite-dimensional representations. The construction can also be applied to in finite-dimensional representations, including unitary, although it becomes in this case somewhat less explicit.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
After adding 7 auxiliary scalars to the d = 10 super-Yang-Mills action, 9 of the 16 supersymmetries close off-shell. In this Letter, these 9 supersymmetry generators are related by dimensional reduction to scalar and vector topological symmetry in N = 2, d = 8 twisted super-Yang-Mills. Furthermore, a gauge-invariant superspace action is constructed for d = 10 super-Yang-Mills where the superfelds depend on 9 anticommuting theta variables. (c) 2007 Published by Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The first step toward the application of an effective non partial wave (PW) numerical approach to few-body atomic bound states has been taken. The two-body transition amplitude which appears in the kernel of three-dimensional Faddeev-Yakubovsky integral equations is calculated as function of two-body Jacobi momentum vectors, i.e. as a function of the magnitude of initial and final momentum vectors and the angle between them. For numerical calculation the realistic interatomic interactions HFDHE2, HFD-B, LM2M2 and TTY are used. The angular and momentum dependence of the fully off-shell transition amplitude is studied at negative energies. It has been numerically shown that, similar to the nuclear case, the transition amplitude exhibits a characteristic angular behavior in the vicinity of He-4 dimer pole.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The influence of dissipation on the simplified Fermi-Ulam accelerator model (SFUM) is investigated. The model is described in terms of a two-dimensional nonlinear mapping obtained from differential equations. It is shown that a dissipative SFUM possesses regions of phase space characterized by the property of area preservation.
Resumo:
Some dynamical properties of a classical particle confined inside a closed region with an oval-shaped boundary are studied. We have considered both the static and time-dependent boundaries. For the static case, the condition that destroys the invariant spanning curves in the phase space was obtained. For the time-dependent perturbation, two situations were considered: (i) non-dissipative and (ii) dissipative. For the non-dissipative case, our results show that Fermi acceleration is observed. When dissipation, via inelastic collisions, is introduced Fermi acceleration is suppressed. The behaviour of the average velocity for both the dissipative as well as the non-dissipative dynamics is described using the scaling approach. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Some dynamical properties for a dissipative time-dependent oval-shaped billiard are studied. The system is described in terms of a four-dimensional nonlinear mapping. Dissipation is introduced via inelastic collisions of the particle with the boundary, thus implying that the particle has a fractional loss of energy upon collision. The dissipation causes profound modifications in the dynamics of the particle as well as in the phase space of the non-dissipative system. In particular, inelastic collisions can be assumed as an efficient mechanism to suppress Fermi acceleration of the particle. The dissipation also creates attractors in the system, including chaotic. We show that a slightly modification of the intensity of the damping coefficient yields a drastic and sudden destruction of the chaotic attractor, thus leading the system to experience a boundary crisis. We have characterized such a boundary crisis via a collision of the chaotic attractor with its own basin of attraction and confirmed that inelastic collisions do indeed suppress Fermi acceleration in two-dimensional time-dependent billiards. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work presents an analysis of the wavelet-Galerkin method for one-dimensional elastoplastic-damage problems. Time-stepping algorithm for non-linear dynamics is presented. Numerical treatment of the constitutive models is developed by the use of return-mapping algorithm. For spacial discretization we can use wavelet-Galerkin method instead of standard finite element method. This approach allows to locate singularities. The discrete formulation developed can be applied to the simulation of one-dimensional problems for elastic-plastic-damage models. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)