977 resultados para diffraction efficiency spectrum
Resumo:
This paper considers cooperative spectrum sensing algorithms for Cognitive Radios which focus on reducing the number of samples to make a reliable detection. We propose algorithms based on decentralized sequential hypothesis testing in which the Cognitive Radios sequentially collect the observations, make local decisions and send them to the fusion center for further processing to make a final decision on spectrum usage. The reporting channel between the Cognitive Radios and the fusion center is assumed more realistically as a Multiple Access Channel (MAC) with receiver noise. Furthermore the communication for reporting is limited, thereby reducing the communication cost. We start with an algorithm where the fusion center uses an SPRT-like (Sequential Probability Ratio Test) procedure and theoretically analyze its performance. Asymptotically, its performance is close to the optimal centralized test without fusion center noise. We further modify this algorithm to improve its performance at practical operating points. Later we generalize these algorithms to handle uncertainties in SNR and fading. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We develop the formalism of quantum mechanics on three-dimensional fuzzy space and solve the Schrodinger equation for the free particle, finite and infinite fuzzy wells. We show that all results reduce to the appropriate commutative limits. A high energy cut-off is found for the free particle spectrum, which also results in the modification of the high energy dispersion relation. An ultra-violet/infra-red duality is manifest in the free particle spectrum. The finite well also has an upper bound on the possible energy eigenvalues. The phase shifts due to scattering around the finite fuzzy potential well are calculated.
Resumo:
This paper investigates the use of adaptive group testing to find a spectrum hole of a specified bandwidth in a given wideband of interest. We propose a group testing-based spectrum hole search algorithm that exploits sparsity in the primary spectral occupancy by testing a group of adjacent subbands in a single test. This is enabled by a simple and easily implementable sub-Nyquist sampling scheme for signal acquisition by the cognitive radios (CRs). The sampling scheme deliberately introduces aliasing during signal acquisition, resulting in a signal that is the sum of signals from adjacent subbands. Energy-based hypothesis tests are used to provide an occupancy decision over the group of subbands, and this forms the basis of the proposed algorithm to find contiguous spectrum holes of a specified bandwidth. We extend this framework to a multistage sensing algorithm that can be employed in a variety of spectrum sensing scenarios, including noncontiguous spectrum hole search. Furthermore, we provide the analytical means to optimize the group tests with respect to the detection thresholds, number of samples, group size, and number of stages to minimize the detection delay under a given error probability constraint. Our analysis allows one to identify the sparsity and SNR regimes where group testing can lead to significantly lower detection delays compared with a conventional bin-by-bin energy detection scheme; the latter is, in fact, a special case of the group test when the group size is set to 1 bin. We validate our analytical results via Monte Carlo simulations.
Resumo:
A new 1D NMR experiment cited as `Quick G-SERF', which re-introduces selective proton-proton scalar interactions in a pure shift spectrum during real time data acquisition, is reported. The method provides information on multiple proton-proton couplings from a single experiment, analogous to the 2D G-SERF technique, while significantly shortening the experimental time by 1-2 orders of magnitude due to reduced dimension and enhanced sensitivity.
Resumo:
Doubly (Sn + F) doped zinc oxide (ZnO:Sn:F) thin films were deposited onto glass substrates using a simplified spray pyrolysis technique. The deposited films were annealed at 400 degrees C under two different ambiences (air and vacuum) for 2 h. The photocatalytic activity of these films was assessed through photocatalytic decolorization kinetics of Methylene Blue (MB) dye and the decolorization efficiency of the annealed films was compared with that of their as-deposited counterpart. The photocatalytic studies reveal that the ZnO:Sn:F films annealed under vacuum environment exhibits better photocatalytic efficiency when compared with both air annealed and as-deposited films. The SEM and TEM images depict that the surface of each of the films has an overlayer comprising of nanobars formed on a bottom layer, having spherical grains. The studies show that the diameter of the nanobars plays crucial role in enhancing the photocatalytic activity of the ZnO:Sn:F films. The structural, optical and electrical studies substantiate the discussions on the photocatalytic ability of the deposited films. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Materials with widely varying molecular topologies and exhibiting liquid crystalline properties have attracted considerable attention in recent years. C-13 NMR spectroscopy is a convenient method for studying such novel systems. In this approach the assignment of the spectrum is the first step which is a non-trivial problem. Towards this end, we propose here a method that enables the carbon skeleton of the different sub-units of the molecule to be traced unambiguously. The proposed method uses a heteronuclear correlation experiment to detect pairs of nearby carbons with attached protons in the liquid crystalline core through correlation of the carbon chemical shifts to the double-quantum coherences of protons generated through the dipolar coupling between them. Supplemented by experiments that identify non-protonated carbons, the method leads to a complete assignment of the spectrum. We initially apply this method for assigning the C-13 spectrum of the liquid crystal 4-n-pentyl-4'-cyanobiphenyl oriented in the magnetic field. We then utilize the method to assign the aromatic carbon signals of a thiophene based liquid crystal thereby enabling the local order-parameters of the molecule to be estimated and the mutual orientation of the different sub-units to be obtained.
Resumo:
The synthesis of the heterobinuclear copper-zinc complex CuZn(bz)(3)(bpy)(2)]ClO4 (bz = benzoate) from benzoic acid and bipyridine is described. Single crystal X-ray diffraction studies of the heterobinuclear complex reveals the geometry of the benzoato bridged Cu(II)-Zn(II) centre. The copper or zinc atom is pentacoordinate, with two oxygen atoms from bridging benzoato groups and two nitrogen atoms from one bipyridine forming an approximate plane and a bridging oxygen atom from a monodentate benzoate group. The Cu-Zn distance is 3.345 angstrom. The complex is normal paramagnetic having mu(eff) value equal to 1.75 BM, ruling out the possibility of Cu-Cu interaction in the structural unit. The ESR spectrum of the complex in CH3CN at RT exhibit an isotropic four line spectrum centred at g = 2.142 and hyperfine coupling constants A(av) = 63 x 10(-4) cm(-1), characteristic of a mononuclear square-pyramidal copper(II) complexes. At LNT, the complex shows an isotropic spectrum with g(parallel to) = 2.254 and g(perpendicular to) =2.071 and A(parallel to) = 160 x 10(-4) cm(-1). The Hamiltonian parameters are characteristic of distorted square pyramidal geometry. Cyclic voltammetric studies of the complex have indicated quasi-reversible behaviour in acetonitrile solution. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Inhibition of electron-hole pair recombination is the most desirable solution for stimulating photocatalytic activity in semiconductor nanostructures. To implement this, herein we study the photocatalytic efficiency of elemental Au, Pd and bimetallic AuPd nanoalloy decorated pristine and reduced graphene oxide (RGO) hybridized ZnO nanorods for degrading rhodamine 6G (R6G) dye. Fabrication of Au, Pd and AuPd nanoalloy on pristine and RGO modified ZnO nanorods is simple and more importantly surfactant or polymer free. AuPd nanoalloyed ZnO-RGO nanocomposites exhibit higher photocatalytic activity for degrading dye than both Au and Pd hybridized ones, indicating the promising potential of bimetallic nanoalloys over elemental components. A non-monotonic dependence on the composite composition was found by analyzing photodegradation efficiency of a series of ZnO-RGO-AuPd hybrid nanostructures with different weight percentages of RGO. The hybrid nanostructure ZnO-RGO (5 wt%)-AuPd (1 wt%) exhibits highest photodegradation efficiency (similar to 100% degradation in 20 min) with an improvement in rate constant (k) by a factor of 10 compared to that of the ZnO-RGO nanocomposite. The enhancement of the photocatalytic activity is attributed to the better separation of photogenerated charge carriers in photocatalysts thereby suggesting possible usefulness in a broad range of applications, such as sensing, photocatalysis and solar energy conversion.
Resumo:
Several operational aspects for thermal power plants in general are non-intuitive and involve simultaneous optimization of a number of operational parameters. In the case of solar operated power plants, it is even more difficult due to varying heat source temperatures induced by variability in insolation levels. This paper introduces a quantitative methodology for load regulation of a CO2 based Brayton cycle power plant using the `thermal efficiency and specific work output' coordinate system. The analysis shows that a transcritical CO2 cycle offers more flexibility under part load performance than the supercritical cycle in case of non-solar power plants. However, for concentrated solar power, where efficiency is important, supercritical CO2 cycle fares better than transcritical CO2 cycle. A number of empirical equations relating heat source temperature, high side pressure with efficiency and specific work output are proposed which could assist in generating control algorithms. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We demonstrate a new technique to generate multiple light-sheets for fluorescence microscopy. This is possible by illuminating the cylindrical lens using multiple copies of Gaussian beams. A diffraction grating placed just before the cylindrical lens splits the incident Gaussian beam into multiple beams traveling at different angles. Subsequently, this gives rise to diffraction-limited light-sheets after the Gaussian beams pass through the combined cylindrical lens-objective sub-system. Direct measurement of field at and around the focus of objective lens shows multi-sheet pattern with an average thickness of 7.5 mu m and inter-sheet separation of 380 mu m. Employing an independent orthogonal detection sub-system, we successfully imaged fluorescently-coated yeast cells (approximate to 4 mu m) encaged in agarose gel-matrix. Such a diffraction-limited sheet-pattern equipped with dedicated detection system may find immediate applications in the field of optical microscopy and fluorescence imaging. (C) 2015 Optical Society of America
Resumo:
The disclosure of information and its misuse in Privacy Preserving Data Mining (PPDM) systems is a concern to the parties involved. In PPDM systems data is available amongst multiple parties collaborating to achieve cumulative mining accuracy. The vertically partitioned data available with the parties involved cannot provide accurate mining results when compared to the collaborative mining results. To overcome the privacy issue in data disclosure this paper describes a Key Distribution-Less Privacy Preserving Data Mining (KDLPPDM) system in which the publication of local association rules generated by the parties is published. The association rules are securely combined to form the combined rule set using the Commutative RSA algorithm. The combined rule sets established are used to classify or mine the data. The results discussed in this paper compare the accuracy of the rules generated using the C4. 5 based KDLPPDM system and the CS. 0 based KDLPPDM system using receiver operating characteristics curves (ROC).
Resumo:
Standard trypsin digestion protocol of proteins followed by MALDI-MS analysis has been realized as an important tool for the identification and characterization of proteins. In this article, we proposed the elimination of the step of `staining/de-staining of gel pieces' in in-gel digestion protocol in order to improve the efficiency of trypsin digestion. Coomassie dye is known to interfere with digestion of proteins by trypsin and the procedure of staining-de-staining could result in loss of photoaffinity probe, post translational modifications and catalytic activities of enzymes. Further, we studied parameters like hydrophobicity and isoelectric point, and attempted to quantitatively relate it to the efficiency of trypsin digestion. We suggest that properties of proteins should be considered and trypsin digestion protocol should be appropriately modified as per sequence and other information.
Resumo:
The detection efficiency of a gaseous photomultiplier depends on the photocathode quantum efficiency and the extraction efficiency of photoelectrons into the gas. In this paper we have studied the performance of an UV photon detector with P10 gas in which the extraction efficiency can reach values near to those in vacuum operated devices. Simulations have been done to compare the percentage of photoelectrons backscattered in P10 gas as well as in the widely used neon-based gas mixture. The performance study has been carried out using a single stage thick gas electron multiplier (THGEM). The electron pulses and electron spectrum are recorded under various operating conditions. Secondary effects prevailing in UV photon detectors like photon feedback are discussed and its effect on the electron spectrum under different operating conditions is analyzed. (C) 2014 Chinese Laser Press
Resumo:
To harvest solar energy more efficiently, novel Ag2S/Bi2WO6 heterojunctions were synthesized by a hydrothermal route. This novel photocatalyst was synthesized by impregnating Ag2S into a Bi2WO6 semiconductor by a hydrothermal route without any surfactants or templates. The as prepared structures were characterized by multiple techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmet-Teller (BET) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDS), UV-vis diffuse reflection spectroscopy (DRS) and photoluminescence (PL). The characterization results suggest mesoporous hierarchical spherical structures with a high surface area and improved photo response in the visible spectrum. Compared to bare Bi2WO6, Ag2S/Bi2WO6 exhibited much higher photocatalytic activity towards the degradation of dye Rhodamine B (RhB). Although silver based catalysts are easily eroded by photogenerated holes, the Ag2S/Bi2WO6 photocatalyst was found to be highly stable in the cyclic experiments. Based on the results of BET, Pl and DRS analysis, two possible reasons have been proposed for the enhanced visible light activity and stability of this novel photocatalyst: (1) broadening of the photoabsorption range and (2) efficient separation of photoinduced charge carriers which does not allow the photoexcited electrons to accumulate on the conduction band of Ag2S and hence prevents the photocorrosion.
Resumo:
An area-efficient, wideband RF frequency synthesizer, which simultaneously generates multiple local oscillator (LO) signals, is designed. It is suitable for parallel wideband RF spectrum sensing in cognitive radios. The frequency synthesizer consists of an injection locked oscillator cascade (ILOC) where all the LO signals are derived from a single reference oscillator. The ILOC is implemented in a 130-nm technology with an active area of . It generates 4 uniformly spaced LO carrier frequencies from 500 MHz to 2 GHz. This design is the first known implementation of a CMOS based ILOC for wide-band RF spectrum sensing applications.