902 resultados para dialysis
Resumo:
The clinical usefulness of hemodialysis catheters is limited by increased infectious morbidity and mortality. Topical antiseptic agents, such as mupirocin, are effective at reducing this risk but have been reported to select for antibiotic-resistant strains. The aim of the present study was to determine the efficacy and the safety of exit-site application of a standardized antibacterial honey versus mupirocin in preventing catheter-associated infections. A randomized, controlled trial was performed comparing the effect of thrice-weekly exit-site application of Medihoney versus mupirocin on infection rates in patients who were receiving hemodialysis via tunneled, cuffed central venous catheters. A total of 101 patients were enrolled. The incidences of catheter-associated bacteremias in honey-treated (n = 51) and mupirocin-treated (n = 50) patients were comparable (0.97 versus 0.85 episodes per 1000 catheter-days, respectively; NS). On Cox proportional hazards model analysis, the use of honey was not significantly associated with bacteremia-free survival (unadjusted hazard ratio, 0.94; 95% confidence interval, 0.27 to 3.24; P = 0.92). No exit-site infections occurred. During the study period, 2% of staphylococcal isolates within the hospital were mupirocin resistant. Thrice-weekly application of standardized antibacterial honey to hemodialysis catheter exit sites was safe, cheap, and effective and resulted in a comparable rate of catheter-associated infection to that obtained with mupirocin (although the study was not adequately powered to assess therapeutic equivalence). The effectiveness of honey against antibiotic-resistant microorganisms and its low likelihood of selecting for further resistant strains suggest that this agent may represent a satisfactory alternative means of chemoprophylaxis in patients with central venous catheters.
Resumo:
Background: In paediatric clinical practice treatment is often adjusted in relation to body size, for example the calculation of pharmacological and dialysis dosages. In addition to use of body weight, for some purposes total body water (TBW) and surface area are estimated from anthropometry using equations developed several decades previously. Whether such equations remain valid in contemporary populations is not known. Methods: Total body water was measured using deuterium dilution in 672 subjects (265 infants aged < 1 year; 407 children and adolescents aged 1-19 years) during the period 1990-2003. TBW was predicted (a) using published equations, and (b) directly from data on age, sex, weight, and height. Results: Previously published equations, based on data obtained before 1970, significantly overestimated TBW, with average biases ranging from 4% to 11%. For all equations, the overestimation of TBW was greatest in infancy. New equations were generated. The best equation, incorporating log weight, log height, age, and sex, had a standard error of the estimate of 7.8%. Conclusions: Secular trends in the nutritional status of infants and children are altering the relation between age or weight and TBW. Equations developed in previous decades significantly overestimate TBW in all age groups, especially infancy; however, the relation between TBW and weight may continue to change. This scenario is predicted to apply more generally to many aspects of paediatric clinical practice in which dosages are calculated on the basis of anthropometric data collected in previous decades.
Resumo:
protein modulation of neuronal nicotinic acetylcholine receptor ( nAChR) channels in rat intrinsic cardiac ganglia was examined using dialyzed whole-cell and excised membrane patch-recording configurations. Cell dialysis with GTP gamma S increased the agonist affinity of nAChRs, resulting in a potentiation of nicotine-evoked whole-cell currents at low concentrations. ACh- and nicotine-evoked current amplitudes were increased approximately twofold in the presence of GTP gamma S. In inside-out membrane patches, the open probability (NPo) of nAChR-mediated unitary currents was reversibly increased fourfold after bath application of 0.2mM GTP gamma S relative to control but was unchanged in the presence of GDP gamma S. The modulation of nAChR-mediated whole- cell currents was agonist specific; currents evoked by the cholinergic agonists ACh, nicotine, and 1,1-dimethyl-4-phenylpiperazinium iodide, but not cytisine or choline, were potentiated in the presence of GTP gamma S. The direct interaction between G-protein subunits and nAChRs was examined by bath application of either G(o)alpha or G beta gamma subunits to inside-out membrane patches and in glutathione S-transferase pull-down and coimmunoprecipitation experiments. Bath application of 50 nM G beta gamma increased the open probability of ACh- activated single-channel currents fivefold, whereas G(o)alpha( 50 nM) produced no significant increase in NPo. Neuronal nAChR subunits alpha 3-alpha 5 and alpha 2 exhibited a positive interaction with G(o)alpha and G beta gamma, whereas beta 4 and alpha 7 failed to interact with either of the G-protein subunits. These results provide evidence for a direct interaction between nAChR and G-protein subunits, underlying the increased open probability of ACh-activated single-channel currents and potentiation of nAChR-mediated whole-cell currents in parasympathetic neurons of rat intrinsic cardiac ganglia.
Resumo:
preparation of liposomes, as a new, continuous and potentially scaleable method for the preparation of ISCOMs. Phosphatidylcholine (PC) and cholesterol (Chol) were dissolved in ether, which was injected into an aqueous solution, maintained at 55 degrees C, containing Quil A. The influences of the following variables on ISCOM formation were investigated: ratio of PC:Quil A:Chol used, pumping rate, total lipid mass and concentration of buffer salts and Quil A in the aqueous phase. All samples were characterized by negative stain transmission electron microscopy, photon correlation spectroscopy and sucrose ultracentrifugation gradient. It was demonstrated that ISCOMs could be produced by this method but the homogeneity of the preparation was influenced by the conditions used. Homogeneous ISCOM preparations were consistently produced only when the weight ratio of PC:Quil A:Chol was 5:3:2 with a total lipid mass of 20 mg, the Quil A dissolved in a 0.01 M phosphate buffer at a concentration of 6 mg in 4 ml, and the ether solution injected into the warmed buffer solution at a rate of 0.2 ml/min. Changing any of these variables resulted in more heterogeneous preparations in which ISCOMs typically co-existed with other colloidal structures such as worm-like and helical micelles, liposomes, lamellae and lipidic particles. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The objective of the study was to assess, from a health service perspective, whether a systematic program to modify kidney and cardiovascular disease reduced the costs of treating end-stage kidney failure. The participants in the study were 1,800 aboriginal adults with hypertension, diabetes with microalbuminuria or overt albuminuria, and overt albuminuria, living on two islands in the Northern Territory of Australia during 1995 to 2000. Perindopril was the primary treatment agent, and other medications were also used to control blood pressure. Control of glucose and lipid levels were attempted, and health education was offered. Evaluation of program resource use and costs for follow-up periods was done at 3 and 4.7 years. On an intention-to-treat basis, the number of dialysis starts and dialysis-years avoided were estimated by comparing the fate of the treatment group with that of historical control subjects, matched for disease severity, who were followed in the before the treatment program began. For the first three years, an estimated 11.6 person-years of dialysis were avoided, and over 4.7 years, 27.7 person-years of dialysis were avoided. The net cost of the program was $1,210 more per person per year than status quo care, and dialyses avoided gave net savings of $1.0 million at 3 years and $3.4 million at 4.6 years. The treatment program provided significant health benefit and impressive cost savings in dialysis avoided. (C) 2005 by the National Kidney Foundation, Inc.
Resumo:
The aim of this study was to ascertain the most suitable dosing schedule for gentamicin in patients receiving hemodialysis. We developed a model to describe the concentrationtime course of gentamicin in patients receiving hemodialysis. Using the model, an optimal dosing schedule was evaluated. Various dosing regimens were compared in their ability to achieve maximum concentration (C-max, >= 8 mg/L) and area under the concentration time-curve (AUC >= 70 mg(.)h/L and <= 120 mg(.)h/L per 24 hours). The model was evaluated by comparing model predictions against real data collected retrospectively. Simulations from the model confirmed the benefits of predialysis dosing. The mean optimal dose was 230 mg administered immediately before dialysis. The model was found to have good predictive performance when simulated data were compared to data observed in real patients. In summary, a model was developed that describes gentamicin pharmacokinetics in patients receiving hemodialysis. Predialysis dosing provided a superior pharmacokinetic profile than did postdialysis dosing.
Resumo:
Measurement of protein-polymer second virial coefficients (B-AP) by sedimentation equilibrium studies of carbonic anhydrase and cytochrome c in the presence of dextrans (T10-T80) has revealed an inverse dependence of B-AP upon dextran molecular mass that conforms well with the behaviour predicted for the excluded-volume interaction between a spherical protein solute A and a random-flight representation of the polymeric cosolute P. That model of the protein-polymer interaction is also shown to provide a reasonable description of published gel chromatographic and equilibrium dialysis data on the effect of polymer molecular mass on BAP for human serum albumin in the presence of polyethylene glycols, a contrary finding from analysis of albumin solubility measurements being rejected on theoretical grounds. Inverse dependence upon polymer chainlength is also the predicted excluded-volume effect on the strength of several types of macromolecular equilibria-protein isomerization, protein dimerization, and 1 : 1 complex formation between dissimilar protein reactants. It is therefore concluded that published experimental observations of the reverse dependence, preferential reaction enhancement within DNA replication complexes by larger polyethylene glycols, must reflect the consequences of cosolute chemical interactions that outweigh those of thermodynamic nonideality arising from excluded-volume effects. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A total of 188 carbohydrate polymer-producing bacterial strains were isolated from recycled sludge of five seafood processing plants. Among three selected isolates, identified as Enterobacter cloacae WD7, Enterobacter agglomerans WD50 and Pseudomonas alcaligenes WD22. E. cloacae WD7 generated a viscous culture broth exhibiting the highest flocculating activity and a crude polymer yield of 2.27 g/L after 3 days cultivation. Partial purification of this polymer was performed by precipitation with 95% ethanol, dialysis and freeze-drying. It was characterized as an acidic heteropolysaccharide, composed of neutral sugars (29.4%), uronic acids (14.2%) and amino sugars (0.93%). The functional group analysis by FT-IR spectroscopy showed the presence of hydroxyl, carboxyl, carbonyl and methoxyl groups. Thermal analysis by DSC showed the crystalline transition and the crystalline melting point (T-m) at 300 degrees C. This polysaccharide was soluble in water and insoluble in any organic solvents tested; gelation occurred under alkaline conditions in the presence of divalent cations in which copper as CuSO4 gave the best result. Studies on the flocculation property revealed that this polysaccharide was stable at 4-60 degrees C and pH 5-7. The optimal concentrations for the flocculating activity were 2 mg/L polysaccharide and 40 mM CaCl2 which played the synergistic effect on kaolin flocculation. Moreover, this polysaccharide could flocculate the kaolin suspension over a wide range of pH (pH 2-8) and temperature (4-50 degrees C) tested in the presence of CaCl2. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Background Cardiac disease is the principal cause of death in patients with chronic kidney disease (CKD). Ischemia at dobutamine stress echocardiography (DSE) is associated with adverse events in these patients. We sought the efficacy of combining clinical risk evaluation with DSE. Methods We allocated 244 patients with CKD (mean age 54 years, 140 men, 169 dialysis-dependent at baseline) into low- and high-risk groups based on two disease-specific scores and the Framingham risk model. All underwent DSE and were further stratified according to DSE results. Patients were followed over 20 +/- 14 months for events (death, myocardial infarction, acute coronary syndrome). Results There were 49 deaths and 32 cardiac events. Using the different clinical scores, allocation of high risk varied from 34% to 79% of patients, and 39% to 50% of high-risk patients had an abnormal DSE. In the high-risk groups, depending on the clinical score chosen, 25% to 44% with an abnormal DSE had a cardiac event, compared with 8% to 22% with a.normal DSE. Cardiac events occurred in 2.0%, 3.1 %, and 9.7% of the low-risk patients, using the two disease-specific and Framingham scores, respectively, and DSE results did not add to risk evaluation in this subgroup. Independent DSE predictors of cardiac events were a lower resting diastolic blood pressure, angina during the test, and the combination of ischemia with resting left ventricular dysfunction. Conclusion In CKD patients, high-risk findings by DSE can predict outcome. A stepwise strategy of combining clinical risk scores with DSE for CAD screening in CKD reduces the number of tests required and identifies a high-risk subgroup among whom DSE results more effectively stratify high and low risk.
Resumo:
The effect of glycosylation on AFP foldability was investigated by parallel quantitative and qualitative analyses of the refolding of glycosylated and nonglycosylated AFP variants. Both variants were successfully refolded by dialysis from the denatured-reduced state, attaining comparable ``refolded peak'' profiles and refolding yields as determined by reversed-phase HPLC analysis. Both refolded variants also showed comparable spectroscopic fingerprints to each other and to their native counterparts, as determined by circular dichroism spectroscopy. Inclusion body-derived AFP was also readily refolded via dilution under the same redox conditions as dialysis refolding, showing comparable circular dichroism fingerprints as native nonglycosylated AFP. Quantitative analyses of inclusion body-derived AFP showed sensitivity of AFP aggregation to proteinaceous and nonproteinaceous inclusion body contaminants, where refolding yields increased with increasing AFP purity. All of the refolded AFP variants showed positive responses in ELISA that corresponded with the attainment of a bioactive conformation. Contrary to previous reports that the denaturation of cord serum AFP is an irreversible process, these results clearly show the reversibility of AFP denaturation when refolded under a redox-controlled environment, which promotes correct oxidative disulfide shuffling. The successful refolding of inclusion body-derived AFP suggests that fatty acid binding may not be required for the attainment of a rigid AFP tertiary structure, contrary to earlier studies. The overall results from this work demonstrate that foldability of the AFP molecule from its denatured-reduced state is independent of its starting source, the presence or absence of glycosylation and fatty acids, and the refolding method used (dialysis or dilution).
Resumo:
The aim of this study was to evaluate dosing schedules of gentamicin in patients with end-stage renal disease and receiving hemodialysis. Forty-six patients were recruited who received gentamicin while on hemodialysis. Each patient provided approximately 4 blood samples at various times before and after dialysis for analysis of plasma gentamicin concentrations. A population pharmacokinetic model was constructed using NONMEM (version 5). The clearance of gentamicin during dialysis was 4.69 L/h and between dialysis was 0.453 L/h. The clearance between dialysis was best described by residual creatinine clearance (as calculated using the Cockcroft and Gault equation), which probably reflects both lean mass and residual clearance mechanisms. Simulation from the final population model showed that predialysis dosing has a higher probability of achieving target maximum concentration (C-max) concentrations (> 8 mg/L) within acceptable exposure limits (area under the concentration-time curve [AUC] values > 70 and < 120 mg.h/L per 24 hours) than postdialysis dosing.