861 resultados para development, hyperpolarization-activated current, Cajal-Retzius, subplate, cortical plate
Resumo:
Reuse of industrial and agricultural wastes as supplementary cementitious materials (SCMs) in concrete and mortar productions contribute to sustainable development. In this context, fluid catalytic cracking catalyst residue (spent FCC), a byproduct from the petroleum industry and petrol refineries, have been studied as SCM in blended Portland cement in the last years. Nevertheless, another environmental friendly alternative has been conducted in order to produce alternative binders with low CO2 emissions. The use of aluminosilicate materials in the production of alkali-activated materials (AAMs) is an ongoing research topic which can present low CO2 emissions associated. Hence, this paper studies some variables that can influence the production of AAM based on spent FCC. Specifically, the influence of SiO 2/Na2O molar ratio and the H2O/spent FCC mass ratio on the mechanical strength and microstructure are assessed. Some instrumental techniques, such as SEM, XRD, pH and electrical conductivity measurements, and MIP are performed in order to assess the microstructure of formed alkali-activated binder. Alkali activated mortars with compressive strength up to 80 MPa can be formed after curing for 3 days at 65°C. The research demonstrates the potential of spent FCC to produce alkali-activated cements and the importance of SiO2/Na2O molar ratio and the H2O/spent FCC mass ratio in optimising properties and microstructure. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Blast furnace slag (BFS)/sugar cane bagasse ash (SCBA) blends were assessed for the production of alkali-activated pastes and mortars. SCBA was collected from a lagoon in which wastes from a sugar cane industry were poured. After previous dry and grinding processes, SCBA was chemically characterized: it had a large percentage of organic matter (ca. 25%). Solutions of sodium hydroxide and sodium silicate were used as activating reagents. Different BFS/SCBA mixtures were studied, replacing part of the BFS by SCBA from 0 to 40% by weight. The mechanical strength of mortar was measured, obtaining values about 60 MPa of compressive strength for BFS/SCBA systems after 270 days of curing at 20 °C. Also, microstructural properties were assessed by means of SEM, TGA, XRD, pH, electrical conductivity, FTIR spectroscopy and MIP. Results showed a good stability of matrices developed by means of alkali-activation. It was demonstrated that sugar cane bagasse ash is an interesting source for preparing alkali-activated binders. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
To become competitive, ultimately, photovoltaics should have its costs reduced and use photovoltaic systems of greater efficiency. The main steps in this direction are the use of new materials, the improvement in the manufacture of modules and the adoption of techniques of maximum power point tracking and of solar tracking. This article aims at presenting the project and development of an azimuth and elevation solar tracker, based on a new conception of the positioning sensor, composed of an array of four photoresistors. The two direct current motors that operate in the vertical and horizontal axes are controlled by a proportional-integral microcontroller. The conditions of the project were low cost, small energy consumption and versatility. The microcontroller can also incorporate a maximum power point tracking algorithm. The performance of solar tracker prototype in the initial phase of field tests can be considered appropriate. © Institution of Engineers Australia, 2013.
Resumo:
We prepared a W/WO3/TiO2 bicomposite photoanode by simple electrochemical anodization of W foil, followed by cathodic electrodeposition of TiO2 and annealing at 450 C for 30 min. This photoanode shows good photoactivity under irradiation with UV and visible light. In optimized conditions, it promotes complete photoelectrocatalytic oxidation of 3.33 × 10-5 mol L-1 basic red 51 solution (which is used in hair dye) at 0.1 mol L-1 Na2SO4, pH 2.0, under a current density of 1.25 mA cm-2 and ultraviolet and visible radiation-total organic carbon removal is 94 and 88%, respectively. This effect paves the way for the sustainable solar-assisted remediation of water bodies contaminated with organic components of hair dyes. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Erythrocytes have an environment of continuous pro-oxidant generation due to the presence of hemoglobin (Hb), which represents an additional and quantitatively significant source of superoxide (O2 •-) generation in biological systems. To counteract oxidative stress, erythrocytes have a self-sustaining antioxidant defense system. Thus, red blood cells uniquely function to protect Hb via a selective barrier allowing gaseous and other ligand transport as well as providing antioxidant protection not only to themselves but also to other tissues and organs in the body. Sickle hemoglobin molecules suffer repeated polymerization/depolymerization generating greater amounts of reactive oxygen species, which can lead to a cyclic cascade characterized by blood cell adhesion, hemolysis, vaso-occlusion, and ischemia-reperfusion injury. In other words, sickle cell disease is intimately linked to a pathophysiologic condition of multiple sources of pro-oxidant processes with consequent chronic and systemic oxidative stress. For this reason, newer therapeutic agents that can target oxidative stress may constitute a valuable means for preventing or delaying the development of organ complications. © © 2013 Elsevier Inc. All rights reserved.
Resumo:
Increasing human demands on soil-derived ecosystem services requires reliable data on global soil resources for sustainable development. The soil organic carbon (SOC) pool is a key indicator of soil quality as it affects essential biological, chemical and physical soil functions such as nutrient cycling, pesticide and water retention, and soil structure maintenance. However, information on the SOC pool, and its temporal and spatial dynamics is unbalanced. Even in well-studied regions with a pronounced interest in environmental issues information on soil carbon (C) is inconsistent. Several activities for the compilation of global soil C data are under way. However, different approaches for soil sampling and chemical analyses make even regional comparisons highly uncertain. Often, the procedures used so far have not allowed the reliable estimation of the total SOC pool, partly because the available knowledge is focused on not clearly defined upper soil horizons and the contribution of subsoil to SOC stocks has been less considered. Even more difficult is quantifying SOC pool changes over time. SOC consists of variable amounts of labile and recalcitrant molecules of plant, and microbial and animal origin that are often operationally defined. A comprehensively active soil expert community needs to agree on protocols of soil surveying and lab procedures towards reliable SOC pool estimates. Already established long-term ecological research sites, where SOC changes are quantified and the underlying mechanisms are investigated, are potentially the backbones for regional, national, and international SOC monitoring programs. © 2013 Elsevier B.V.
Resumo:
Spanish and French versions available in the Library
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
The European Union has taken special interest in promoting development cooperation as an instrument along with framework and association agreements. Today, the countries making up the strategic partnership between the European Union and the current Community of Latin American and Caribbean States (CELAC) are in a far different position from the one envisaged in the early 1990s. Nearly 15 years on from the launch of the strategic partnership between the European Union and the current Community of Latin American and Caribberan States (CELAC, formerly the Rio Group), it is important to look at the future prospects for cooperation. During this change, the strategic partnership between the European Union and CELAC will continue, so European Union cooperation must also change to meet this challenge.
Resumo:
• Editorial remarks.-- Open discussion: Tariffs and subsidies: the current situation and trends in the region ; State-owned utilities and the flight from public law: challenges and trends ; Challenges and opportunities in access to water and sanitation in rural areas.-- Meetings: Proposals based on the Water and Environment Initiative consensuses.-- News of the Network: Peru’s Compensation Mechanisms for Ecosystem Services Act ; Ecuador’s Act on Water Resources and Water Use and Exploitation ; The environmental dynamics of groundwater in Mexico ; The Water Citizenship Programme in the province of Mendoza, Argentina.-- Internet and WWW News
Resumo:
The Caribbean region remains highly vulnerable to the impacts of climate change. In order to assess the social and economic consequences of climate change for the region, the Economic Commission for Latin America and the Caribbean( ECLAC) has developed a model for this purpose. The model is referred to as the Climate Impact Assessment Model (ECLAC-CIAM) and is a tool that can simultaneously assess multiple sectoral climate impacts specific to the Caribbean as a whole and for individual countries. To achieve this goal, an Integrated Assessment Model (IAM) with a Computable General Equilibrium Core was developed comprising of three modules to be executed sequentially. The first of these modules defines the type and magnitude of economic shocks on the basis of a climate change scenario, the second module is a global Computable General Equilibrium model with a special regional and industrial classification and the third module processes the output of the CGE model to get more disaggregated results. The model has the potential to produce several economic estimates but the current default results include percentage change in real national income for individual Caribbean states which provides a simple measure of welfare impacts. With some modifications, the model can also be used to consider the effects of single sectoral shocks such as (Land, Labour, Capital and Tourism) on the percentage change in real national income. Ultimately, the model is envisioned as an evolving tool for assessing the impact of climate change in the Caribbean and as a guide to policy responses with respect to adaptation strategies.