1000 resultados para delta 13C, carbonate


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A lacustrine sediment core from Store Koldewey, northeast Greenland, was biogeochemically, biologically and sedimentologically investigated in order to reconstruct long- and short-term climatic and environmental variability. The chronology of the uppermost 189 cm of the record is based on ten 14C AMS age determinations of aquatic mosses. The record covers almost the entire Holocene and revealed changes on multidecadal to centennial scales. Dating of the oldest mosses shows that lacustrine biogenic productivity already began at around 11 cal. kyr BP. This age pre-dates the onset of biogenic productivity in other lakes on Store Koldewey by about 2 kyr. In spite of the early onset of biogenic production organic matter accumulation remained low and minerogenic sedimentation dominated. At about 9.5 cal. kyr BP moss, sulphur, organic carbon and biogenic silica content started to increase, indicating that the environment stabilized and the biogenic production in the lake adjusted to more preferable conditions. Subsequently, the biogenic productivity experienced repeated changes and varied both on long- and short-term scales. The long-term trend shows a maximum during the early Holocene thus responding to increased temperatures during the Holocene Thermal Maximum. Superimposed on the long-term trend, biogenic productivity also experienced repeated short-term fluctuations that match partly the NGRIP temperatures. The most pronounced decrease of biogenic productivity occurred at around 8.2 cal. kyr BP. Perennial lake ice coverage resulting from low temperatures is supposed to have caused decreased lacustrine biogenic productivity. From the middle Holocene to the present repeated decreases of productivity occurred that could be related to periods with severe sea-ice conditions of the East Greenland Current. Besides the dependence on air temperature it therefore demonstrates the sensitivity of lacustrine biogenic productivity in coastal high arctic areas to short-term cold spells that are mediated by the currents emanating from the Arctic Ocean. However, the data also emphasize the difficulties associated with the interpretation of lacustrine records.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Submarine canyon systems provide a heterogeneous habitat for deep-sea benthos in terms of topography, hydrography, and the quality and quantity of organic matter present. Enhanced meiofauna densities as found in organically enriched canyon sediments suggest that nematodes, as the dominant metazoan meiobenthic taxon, may play an important role in the benthic food web of these sediments. Very little is known about the natural diets and trophic biology of deep-sea nematodes, but enrichment experiments can shed light on nematode feeding selectivity and trophic position. An in-situ pulse-chase experiment (Feedex) was performed in the Nazaré Canyon on the Portuguese margin in summer 2007 to study nematode feeding behaviour. 13C-labelled diatoms and bacteria were added to sediment cores which were then sampled over a 14-day period. There was differential uptake by the nematode community of the food sources provided, indicating selective feeding processes. 13C isotope results revealed that selective feeding was less pronounced at the surface, compared to the sediment subsurface. This was supported by a higher trophic diversity in surface sediments compared to the subsurface, implying that more food items may be used by the nematode community at the sediment surface. Predatory and scavenging nematodes contributed relatively more to biomass than other feeding types and can be seen as key contributors to the nematode food web at the canyon site. Non-selective deposit feeding nematodes were the dominant trophic group in terms of abundance and contributed substantially to total nematode biomass. The high levels of 'fresh' (bioavailable) organic matter input and moderate hydrodynamic disturbance of the canyon environment lead to a more complex trophic structure in canyon nematode communities than that found on the open continental slope, and favours predator/scavengers and non-selective deposit feeders.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most concentration profiles of sulfate in continental margin sediments show constant or continuously increasing gradients from the benthic boundary layer down to the deep sulfate reduction zone. However, a very marked change in this gradient has been observed several meters below the surface at many locations, which has been attributed to anoxic sulfide oxidation or to non-local transport mechanisms of pore waters. The subject of this study is to investigate whether this feature could be better explained by non-steady state conditions in the pore-water system. To this end, data are presented from two gravity cores recovered from the Zaire deep-sea fan. The sediments at this location can be subdivided into two sections. The upper layer, about 10 m thick, consists of stratified pelagic deposits representing a period of continuous sedimentation over the last 190 kyr. It is underlain by a turbidite sequence measuring several meters in thickness, which contains large crystals of authigenic calcium carbonate (ikaite: CaCO3·6H2O). Ikaite delta13C values are indicative of a methane carbon contribution to the CO2 pool. Radiocarbon ages of these minerals, as well as of the adjacent bulk sediments, provide strong evidence that the pelagic sediments have overthrust the lower section as a coherent block. Therefore, the emplacement of a relatively undisturbed sediment package is postulated. Pore-water profiles show the depth of the sulfate-methane transition zone within the turbiditic sediments. By the adaptation of a simple transport-reaction model, it is shown that the change in the geochemical environmental conditions, resulting from this slide emplacement, and the development towards a new steady state are fully sufficient to explain all features related to the pore-water profiles, particularly, [SO4]2- and dissolved inorganic carbon (DIC). The model shows that the downslope transport took place about 300 yr ago.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Organic-carbon-rich 'black shales' and adjacent organic-carbon-poor rocks from three different Cretaceous settings encountered during ODP Leg 103 have been studied by organic geochemical methods. Rock-Eval analysis, carbon isotope data, and lipid biomarkers show organic matter to contain varying proportions of marine and continental materials. In Hauterivian-Barremian organic-carbon-rich marlstone turbidites, large amounts of land-derived organic matter are found. Aptian-Albian black-colored shales are interspersed within green claystones, from which they differ by containing more marine organic matter. An abbreviated layer of black shale from the Cenomanian/Turonian boundary is dominated by well-preserved marine organic matter. Downslope transport and rapid reburial within a predominantly oxygenated deep-water setting created most of these examples of black shales, except for the Cenomanian-Turonian deposits in which deep-water anoxia may have been involved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ocean Drilling Program Leg 207 recovered thick sequences of Albian to Santonian organic-carbon-rich claystones at five drill-sites on the Demerara Rise in the western equatorial Atlantic Ocean. Dark-colored, finely laminated, Cenomanian-Santonian black shale sequences contain between 2% and 15% organic carbon and encompass Oceanic Anoxic Events 2 and 3. High Rock-Eval hydrogen indices signify that the bulk of the organic matter in these sequences is marine in origin. However, d13Corg values lie mostly between -30 per mil and -27 per mil, and TOC/TN ratios range from 15 to 42, which both mimic the source signatures of modern C3 land plants. The contradictions in organic matter source indicators provide important implications about the depositional conditions leading to the black shale accumulations. The low d13Corg values, which are actually common in mid-Cretaceous marine organic matter, are consequences of the greenhouse climate prevailing at that time and an associated accelerated hydrologic cycle. The elevated C/N ratios, which are also typical of black shales, indicate depressed organic matter degradation associated with low-oxygen conditions in the water column that favored preservation of carbon-rich forms of marine organic matter over nitrogen-rich components. Underlying the laminated Cenomanian-Santonian sequences are homogeneous, dark-colored, lower to middle Albian siltstones that contain between 0.2% and 9% organic carbon. The organic matter in these rocks is mostly marine in origin, but it occasionally includes large proportions of land-derived material.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

High sedimentation rates in fjords provide excellent possibilities for high resolution sedimentary and geochemical records over the Holocene. As a baseline for an improved interpretation of geochemical data from fjord sediment cores, this study aims to investigate the inorganic/organic geochemistry of surface sediments and to identify geochemical proxies for terrestrial input and river discharge in the Trondheimsfjord, central Norway. Sixty evenly distributed surface sediment samples were analysed for their elemental composition, total organic carbon (Corg), nitrogen (Norg) and organic carbon stable isotopes (d13Corg), bulk mineral composition and grain size distribution. Our results indicate carbonate marine productivity to be the main CaCO3 source. Also, a strong decreasing gradient of marine-derived organic matter from the entrance towards the fjord inner part is consistent with modern primary production data. We show that the origin of the organic matter as well as the distribution of CaCO3 in Trondheimsfjord sediments can be used as a proxy for the variable inflow of Atlantic water and changes in river runoff. Furthermore, the comparison of grain size independent Al-based trace element ratios with geochemical analysis from terrigenous sediments and bedrocks provides evidence that the distribution of K/Al, Ni/Al and K/Ni in the fjord sediments reflect regional sources of K and Ni in the northern and southern drainage basin of the Trondheimsfjord. Applying these findings to temporally well-constrained sediment records will provide important insights into both the palaeoenvironmental changes of the hinterland and the palaeoceanographic modifications in the Norwegian Sea as response to rapid climate changes and associated feedback mechanisms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Organic geochemical data of Lower Cretaceous shallow water sediments from two sites (865 and 866) drilled during ODP leg 143 are presented. The organic matter is mainly terrestrial at the bottom of the sedimentary column at site 865, whereas algal and/or bacterial organic matter is dominant at site 866. This is the first evidence of shallow water deposition of organic matter during the Early Cretaceous in the Northwestern Pacific. The lower Aptian organic carbon-rich layers from the shallow water sediments of site 866 are geochemically similar to coeval mid-water sediments of site 463.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Substantial amounts of adsorbed methane were detected in authigenic carbonate concretions recovered from sedimentary layers from depths between 245 and 1,108 m below seafloor during Ocean Drilling Program Leg 186 to ODP sites 1150 and 1151 on the deep-sea terrace of the Japan Trench. Methane contents were almost two orders of magnitude higher in the concretions (291-4,528 nmol/g wet wt) than in the surrounding bulk sediments (5-93 nmol/g wet wt), whereas methane/ethane ratios and stable carbon isotopic compositions were very similar. Carbonate content of surrounding bulk sediments (0.02-3.2 wet wt%) and methane content of the surrounding bulk sediments correlated positively. Extrapolation of the carbonate contents of bulk sediments suggests that 100 wt% carbonate would correspond to 1,886±732 nmol methane per g bulk sediment, which is similar to the average value observed in the carbonate concretions (1,321±1,067 nmol/g wet wt, n = 13). These data support the hypothesis that, in sediments, adsorbed hydrocarbon gases are strongly associated with authigenic carbonates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The organic geochemical character of rocks selected from Aptian, Valanginian, and Berriasian clay stone and siltstone sequences encountered in Ocean Drilling Program (ODP) Holes 762C and 763C on the Exmouth Plateau was determined by means of a variety of analytical procedures. These sequences represent distal portions of the Mesozoic Barrow delta, in which petroleum source rocks and reservoirs exist on the Australian continent. The organic matter at the ODP sites is thermally immature type III material. Biomarker hydrocarbon compositions are dominated by long-chain, waxy n-alkanes and by C29 steranes, which reflect the land-plant origin of organic matter. Organic carbon d13C values ranged from -26 per mil to -28 per mil, consistent with a C3 land-plant source. Kerogen pyrolysate compositions and hopane isomerization ratios revealed progressively larger contributions of recycled organic matter as the depth of the deltaic sedimentary layers became greater.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The calcium isotopic composition of porewaters and authigenic carbonates in the anoxic sediments of a convergent continental margin drilled during Ocean Drilling Program (ODP) provides first insight into the different processes that control Ca geochemistry in clastic marine, organic-rich sedimentary environments. In 4 sites drilled during Leg 204 at Hydrate Ridge (Cascadia Margin, offshore Oregon/USA), sulfate is consumed during anaerobic oxidation of methane and of organic matter via sulfate reduction within the upper meters of the sedimentary section. These reactions promote the precipitation of authigenic carbonates through the generation of bicarbonate, which is reflected in a pronounced decrease in calcium concentration. Although Ca isotope fractionation is observed during carbonate precipitation, Ca concentration in the pore fluids from ODP Leg 204 is decoupled from Ca isotopy, which seems to be mainly controlled by the release of light Ca isotopes that completely overprint the carbonate formation effect. Different processes, such as the release of organically bound Ca, ion exchange and ion pair formation may be responsible for the released light Ca. Deeper within the sedimentary section, additional processes such as ash alteration influence the Ca isotopic composition of the porewater. Two sites, drilled into the deeper core of the accretionary prism, reveal the nature of fluids which have reacted with the oceanic basement. These deep fluids are characterized by relatively high Ca concentrations and low d44/40Ca ratios.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ocean acidification affects with special intensity Arctic ecosystems, being marine photosynthetic organisms a primary target, although the consequences of this process in the carbon fluxes of Arctic algae are still unknown. The alteration of the cellular carbon balance due to physiological acclimation to an increased CO2 concentration (1300 ppm) in the common Arctic brown seaweeds Desmarestia aculeata and Alaria esculenta from Kongsfjorden (Svalbard) was analysed. Growth rate of D. aculeata was negatively affected by CO2 enrichment, while A. esculenta was positively affected, as a result of a different reorganization of the cellular carbon budget in both species. Desmarestia aculeata showed increased respiration, enhanced accumulation of storage biomolecules and elevated release of dissolved organic carbon, whereas A. esculenta showed decreased respiration and lower accumulation of storage biomolecules. Gross photosynthesis (measured both as O2 evolution and 14C fixation) was not affected in any of them, suggesting that photosynthesis was already saturated at normal CO2 conditions and did not participate in the acclimation response. However, electron transport rate changed in both species in opposite directions, indicating different energy requirements between treatments and species specificity. High CO2 levels also affected the N-metabolism, and 13C isotopic discrimination values from algal tissue pointed to a deactivation of carbon concentrating mechanisms. Since increased CO2 has the potential to modify physiological mechanisms in different ways in the species studied, it is expected that this may lead to changes in the Arctic seaweed community, which may propagate to the rest of the food web.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Degradation of organic matter in slightly organic-rich (1 wt% organic carbon) Neogene calcareous turbidites of the Argo Basin at Site 765 by sulfate reduction results in pore-water phosphate, ammonium, manganese, and carbonate alkalinity maxima. Pore-water calcium and magnesium decrease in the uppermost 100 meters below seafloor (mbsf) in response to the precipitation of calcian dolomite with an average composition of Ca1.15Mg0.83Fe0.02(CO3)2. Clear, euhedral dolomite rhombs range from <1 to 40 µm in diameter and occur in trace to minor amounts (<1-2 wt%) in Pleistocene to Pliocene sediment (62-210 mbsf) The abundance of dolomite increases markedly (2-10 wt%) in Miocene sediment (210-440 mbsf). The dolomite is associated with diagenetic sepiolite and palygorskite, as well as redeposited biogenic low-Mg calcite and aragonitic benthic foraminifers. Currently, dolomite is precipitating at depth within the pore spaces of the sediment, largely as a result of aragonite dissolution. The rate of aragonite dissolution, calculated from the pore-water strontium profile, is sufficient to explain the amount of dolomite observed at Site 765. A foraminiferal aragonite precursor is further supported by the carbon and oxygen isotopic compositions of the dolomite, which are fairly close to the range of isotopic compositions observed for Miocene benthic foraminifers. Dolomite precipitation is promoted by the degradation of organic matter by sulfate-reducing bacteria because the lower pore-water sulfate concentration reduces the effect of sulfate inhibition on the dolomite reaction and because the higher carbonate alkalinity increases the degree of saturation of the pore waters with dolomite. Organic matter degradation also results in the precipitation of pyrite and trace amounts of apatite (francolite), and the release of iron and manganese to the pore water by reduction of Fe and Mn oxides. Spherical, silt-sized aggregates of microcrystalline calcian rhodochrosite occur in trace to minor amounts in Lower Cretaceous sediment from 740 to 900 mbsf at Site 765. A negative carbon isotopic composition suggests that the rhodochrosite formed early in the sulfate reduction zone, but a depleted oxygen isotopic composition suggests that the rhodochrosite may have recrystallized at deeper burial depths.