957 resultados para deformed odd-odd Au-184
Resumo:
Au-Pt core-shell nanoparticles were prepared on glass surface by a seed growth method. Gold nanoparticles were used as seeds and ascorbic acid-H2PtCL6 solutions as growth solutions to deposit Pt shell on the surface of gold nanoparticles. These core-shell nanoparticles and their growth process were examined by UV-Vis spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and field-emission environmental scanning electron microscopy and the results indicated that the deposition speed was fast and nanoparticles with obvious core-shell structure could be obtained after 2 min. Moreover, this seed growth method for preparation of the core-shell nanoparticles is simple and convenient compared with other seed growth methods with NH4OH as a mild reductant. In addition, electrochemical experiments indicated that these Au-Pt core-shell nanoparticles had similar electrochemical properties to those of the bulk Pt electrode.
Resumo:
A novel solution-phase method for the preparation of Au@ZnO core-shell composites was described. With this method, the composites were grown without heating that is usually needed in other solution methods. Atomic force microscopy (AFM) results show that the diameter of Au@ZnO core-shell composites is about 10.5 nm. X-ray photoelectron spectroscopy (XPS) was applied to characterize Au@ZnO core-shell composites. The optical properties of Au@ZnO core-shell composites, including UV-vis absorption and photo luminescence (PL), were observed at room temperature.
Resumo:
Surface replacement reaction of thiol-derivatized, single-stranded oligonucleotide (HS-ssDNA) by mercaptohexanol (MCH) is investigated in order to reduce surface density of the HS-ssDNA adsorbed to Au(111) surface. Cyclic voltammograms (CVs) and scanning tunneling microscopy (STM) are employed to assess the composition and state of these mixed monolayers. It is found that each CV of mixed self-assembled monolayers (SAMs) only shows a single reductive desorption peak, which suggests that the resulted, mixed SAMs do not form discernable phase-separated domains. The peak potential gradually shifts to negative direction and the peak area increases step by step over the whole replacement process. By analyzing these peak areas, it is concluded that two MCH molecules will replace one HS-ssDNA molecule and relative coverage can also be estimated as a function of exposing time. The possible mechanism of the replacement reaction is also proposed. The DNA surface density exponentially reduces with the exposing time increasing, in other words, the replacement reaction is very fast in the first several hours and then gradually slows down. Moreover, the morphological change in the process is also followed by STM.
Resumo:
The electrochemical polymerization of 0.01 M aniline in 1 M H2SO4 aqueous solution on roughened Au surface modified with a self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) has been investigated by in situ electrochemical surface-enhanced Raman scattering spectroscopy (SERS). The repeat units and possible structures of the electrodeposited polyaniline (PANI) film were proposed; i.e., aniline monomer is coupled in head-to-tail predominately at the C-4 of aniline and amine of 4-ATP, and the thin PANI film is orientated vertically to substrate surface. Simultaneous Raman spectra during potential scanning indicate clearly that the ultrathin PANI film (in initial growth of the film) consists of semiquinone radical cation (IP+), para-disubstituted benzene (IP and IP+) and quinine diimine (NP) while it is oxidized, and without quinine diimine and semiquinone radical cation while reduced. Meanwhile, the results confirm that 4-ATP monolayer shows a strong promotion on the electrodeposition of aniline monomer, and a possible polymerization mechanism was proposed.
Resumo:
A simple method for the fabrication of Pd nanoparticles is described. The three-dimensional Pd nanoparticle films are directly formed on a gold electrode surface by simple electrodeposition at -200 mV from a solution of 1 M H2SO4+0.01 mM K2PdCl4. X-Ray photoelectron spectroscopy verifies the constant composition of the Pd nanoparticle films. Atomic force microscopy proves that the as-prepared Pd nanoparticles are uniformly distributed with an average particle diameter of 45-60 nm. It is confirmed that the morphology of the Pd nanoparticle films are correlated with the electrodeposition time and the state of the Au substrate. The resulting Pd-nanoparticle-film-modified electrode possesses high catalytic activity for the reduction of dissolved oxygen in 0.1 M KCl solution. Freshly prepared Pd nanoparticles can catalyze the reduction of O-2 by a 4-electron process at -200 mV in 0.1 M KCl, but this system is not very stable. The cathodic peaks corresponding to the reduction of O-2 gradually decrease with potential cycling and at last reach a steady state. Then two well-defined reduction peaks are observed at -390 and -600 mV vs. Ag/AgCl/KCl (sat.). Those two peaks correspond to a 2-step process for the 4-electron reduction pathway of O-2 in this neutral medium.
Resumo:
Possible conformers for AunPdm (n = 1-4, m = -1, 0, 1) clusters have been presented and studied by use of density functional theory. The results indicate that for n = 2, linear conformer with C-infinityv symmetry is the most stable for anion species, while for cation and neutral species, conformer with C-2v symmetry is the most stable. For n = 3, 4, conformers with C-2v symmetry (kite-shape) are energetically favored. The calculated electron affinities (EAs) and vertical detachment energies (VDEs) are in good agreement with experiments for n = 1-4. It is also interesting to note that for even n (n = 2, 4), the most stable conformers do not give the best agreement between calculated and experimental EA and VDE values, while for odd n (n = 3), the lowest energy conformer also gives the best agreement. The ionization potentials (IPs) of AunPd clusters are calculated as well.
Resumo:
Photoactive and electroactive thionine dyes have been introduced in high-surface-area surface-confined Au-nanoparticle superstructures by layer-by-layer deposition techniques.
Resumo:
A new and simple approach for preparation of Au(111) single-crystal nanoisland - arrayed electrode ensembles, based on fine colloidal Au monolayer-directed seeding growth, is reported.
Resumo:
Fragmentation pathways of aconitine-type alkaloids were investigated by electrospray ionization/ion trap multistage tandem mass spectrometry. Low-energy collision-induced dissociation of protonated aconitines follows a dominant first step, the elimination of the C-8-substituent as acetic acid or fatty acid in MS2 spectra. Successive losses of 1-4 CH3OH molecules, 1-3 H2O, CO, benzoic acid, and CH3 or C2H5 (N-substituents) are all fragmentation pathways observed in MS3 and MS4 spectra. By applying knowledge of these fragmentation pathways to the aconitines in the ethanolic extract of aconite roots, all the known aconitines were detected and also 23 unknown aconitine-type alkaloids, in which the lipo-alkaloids containing residues of 15C, 17C and 19C saturated or unsaturated fatty acids were characterized. These odd-carbon-number fatty acid substituents have not been reported previously.
Resumo:
A unique reverse micelle method has been developed to prepare gold-coated iron (Fe@Au) nanoparticles. XRD, UV/vis, TEM, and magnetic measurements are utilized to characterize the nanocomposites. XRD only gives FCC patterns of gold for the obtained nanoparticles. The absorption band of the Fe@Au colloid shifts to a longer wavelength and broadens relative to that of the pure gold colloid. TEM results show that the average size of Fe@Au nanoparticles is about 10 nm, These nanoparticles are self-assembled into chains on micron scale under a 0.5 T magnetic field. Magnetic measurements show that the particles are superparamagnetic with a blocking temperature (T-B) of 42 K, At 300 K (above T-B), no coercivity (Hc) and remanence (M-r) is observed in the magnetization curve, while at 2K (below T-B) He and M, are observed to be 728 Oe and 4.12 emu/g, respectively, (C) 2001 Academic Press.
Resumo:
Self-assembled monolayer of natural single-stranded DNA (ssDNA) from dl:natured plasmid DNA and pBR322/PstI marker was first observed on Au(111) by low-current STM (Lc-STM). The width of ssDNA stripe measured is 0.9 +/- 0.1 nm, which is just half of the theoretical width of double-stranded DNA (dsDNA). Each ssDNA stripe consists of bright and dark parts. alternatively; the period of two adjacent bright parts in the same ssDNA stripe measured is 0.4 +/- 0.1 nm, which is consistent with the theoretical distance between two adjacent base pairs in ssDNA. The stripe orientations in ssDNA domains are predominately at angles of 0 degrees, 60 degrees or 120 degrees relative to crystallographically faceted steps on the gold surface. The electrochemical experiment indicated that it was ssDNA but not dsDNA that was absorbed on Au(111)surface. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A new series of liquid crystals of bis[4-(p-phenoxy)-phenylbenozoate] alkyldicarboxylate which contain two rigid groups connected by a flexible spacer was synthesized. These liquid crystals show nematic phase and were found to show odd-even effect in isotropization temperature and entropy change.
Resumo:
In situ electrochemical scanning tunneling microscopy (ECSTM) and an electrochemical quartz crystal microbalance (EQCM) have been employed to follow the adsorption/desorption processes of phenanthraquinone (PQ sat. in 0.1 mol l(-1) HClO4, solution) accompanied with an electrochemical redox reaction on the Au electrode. The result shows that: (1) the reduced form PQH(2) adsorbed at the Au electrode and the desorption occurred when PQH(2) was oxidized to PQ; (2) the adsorption process initiates at steps or kinks which provide high active sites on the electrode surface for adsorption, and as the potential shifts to negative, a multilayer of PQH(2) may be formed at the Au electrode; (3) the reduced PQH(2) adsorbed preferentially in the area where the tip had been scanned continually; this result suggests that the tip induction may accelerate the adsorption of PQH(2) on the Au(111) electrode. Two kinds of possible reason have been discussed; (4) high resolution STM images show the strong substrate lattice information and the weak monolayer adsorbate lattice information simultaneously. The PQH(2) molecules pack into a not perfectly ordered condensed physisorbed layer at potentials of 0.1 and 0.2 V with an average lattice constant a = 11.5 +/- 0.4 Angstrom, b = 11.5 +/- 0.4 Angstrom, and gamma = 120 +/- 2 degrees; the molecular lattice is rotated with respect to the substrate lattice by about 23 +/- 2 degrees. (C) 1997 Elsevier Science S.A.