854 resultados para data warehouse tuning aggregato business intelligence performance


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis analyses problems related to the applicability, in business environments, of Process Mining tools and techniques. The first contribution is a presentation of the state of the art of Process Mining and a characterization of companies, in terms of their "process awareness". The work continues identifying circumstance where problems can emerge: data preparation; actual mining; and results interpretation. Other problems are the configuration of parameters by not-expert users and computational complexity. We concentrate on two possible scenarios: "batch" and "on-line" Process Mining. Concerning the batch Process Mining, we first investigated the data preparation problem and we proposed a solution for the identification of the "case-ids" whenever this field is not explicitly indicated. After that, we concentrated on problems at mining time and we propose the generalization of a well-known control-flow discovery algorithm in order to exploit non instantaneous events. The usage of interval-based recording leads to an important improvement of performance. Later on, we report our work on the parameters configuration for not-expert users. We present two approaches to select the "best" parameters configuration: one is completely autonomous; the other requires human interaction to navigate a hierarchy of candidate models. Concerning the data interpretation and results evaluation, we propose two metrics: a model-to-model and a model-to-log. Finally, we present an automatic approach for the extension of a control-flow model with social information, in order to simplify the analysis of these perspectives. The second part of this thesis deals with control-flow discovery algorithms in on-line settings. We propose a formal definition of the problem, and two baseline approaches. The actual mining algorithms proposed are two: the first is the adaptation, to the control-flow discovery problem, of a frequency counting algorithm; the second constitutes a framework of models which can be used for different kinds of streams (stationary versus evolving).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The first aim of this thesis was to contribute to the understanding of how cultural capital (Bourdieu, 1983/1986) affects students achievements and performances. We specifically claimed that the effect of cultural capital is at least partly explained by the positioning students take towards the principles they use to attribute competence and intelligence. The testing of these hypothesis have been framed within the social representations theory, specifically in the formulation of the Lemanic school approach (Doise, 1986).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

n the last few years, the vision of our connected and intelligent information society has evolved to embrace novel technological and research trends. The diffusion of ubiquitous mobile connectivity and advanced handheld portable devices, amplified the importance of the Internet as the communication backbone for the fruition of services and data. The diffusion of mobile and pervasive computing devices, featuring advanced sensing technologies and processing capabilities, triggered the adoption of innovative interaction paradigms: touch responsive surfaces, tangible interfaces and gesture or voice recognition are finally entering our homes and workplaces. We are experiencing the proliferation of smart objects and sensor networks, embedded in our daily living and interconnected through the Internet. This ubiquitous network of always available interconnected devices is enabling new applications and services, ranging from enhancements to home and office environments, to remote healthcare assistance and the birth of a smart environment. This work will present some evolutions in the hardware and software development of embedded systems and sensor networks. Different hardware solutions will be introduced, ranging from smart objects for interaction to advanced inertial sensor nodes for motion tracking, focusing on system-level design. They will be accompanied by the study of innovative data processing algorithms developed and optimized to run on-board of the embedded devices. Gesture recognition, orientation estimation and data reconstruction techniques for sensor networks will be introduced and implemented, with the goal to maximize the tradeoff between performance and energy efficiency. Experimental results will provide an evaluation of the accuracy of the presented methods and validate the efficiency of the proposed embedded systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Emotional intelligence (EI) represents an attribute of contemporary attractiveness for the scientific psychology community. Of particular interest for the present thesis are the conundrum related to the representation of this construct conceptualized as a trait (i.e., trait EI), which are in turn reflected in the current lack of agreement upon its constituent elements, posing significant challenges to research and clinical progress. Trait EI is defined as an umbrella personality-alike construct reflecting emotion-related dispositions and self-perceptions. The Trait Emotional Intelligence Questionnaire (TEIQue) was chosen as main measure, given its strong theoretical and psychometrical basis, including superior predictive validity when compared to other trait EI measures. Studies 1 and 2 aimed at validating the Italian 153-items forms of the TEIQue devoted to adolescents and adults. Analyses were done to investigate the structure of the questionnaire, its internal consistencies and gender differences at the facets, factor, and global level of both versions. Despite some low reliabilities, results from Studies 1 and 2 confirm the four-factor structure of the TEIQue. Study 3 investigated the utility of trait EI in a sample of adolescents over internalizing conditions (i.e., symptoms of anxiety and depression) and academic performance (grades at math and Italian language/literacy). Beyond trait EI, concurrent effects of demographic variables, higher order personality dimensions and non-verbal cognitive ability were controlled for. Study 4a and Study 4b addressed analogue research questions, through a meta-analysis and new data in on adults. In the latter case, effects of demographics, emotion regulation strategies, and the Big Five were controlled. Overall, these studies showed the incremental utility of the TEIQue in different domains beyond relevant predictors. Analyses performed at the level of the four-TEIQue factors consistently indicated that its predictive effects were mainly due to the factor Well-Being. Findings are discussed with reference to potential implication for theory and practice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Classic group recommender systems focus on providing suggestions for a fixed group of people. Our work tries to give an inside look at design- ing a new recommender system that is capable of making suggestions for a sequence of activities, dividing people in subgroups, in order to boost over- all group satisfaction. However, this idea increases problem complexity in more dimensions and creates great challenge to the algorithm’s performance. To understand the e↵ectiveness, due to the enhanced complexity and pre- cise problem solving, we implemented an experimental system from data collected from a variety of web services concerning the city of Paris. The sys- tem recommends activities to a group of users from two di↵erent approaches: Local Search and Constraint Programming. The general results show that the number of subgroups can significantly influence the Constraint Program- ming Approaches’s computational time and e�cacy. Generally, Local Search can find results much quicker than Constraint Programming. Over a lengthy period of time, Local Search performs better than Constraint Programming, with similar final results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years, Deep Learning techniques have shown to perform well on a large variety of problems both in Computer Vision and Natural Language Processing, reaching and often surpassing the state of the art on many tasks. The rise of deep learning is also revolutionizing the entire field of Machine Learning and Pattern Recognition pushing forward the concepts of automatic feature extraction and unsupervised learning in general. However, despite the strong success both in science and business, deep learning has its own limitations. It is often questioned if such techniques are only some kind of brute-force statistical approaches and if they can only work in the context of High Performance Computing with tons of data. Another important question is whether they are really biologically inspired, as claimed in certain cases, and if they can scale well in terms of "intelligence". The dissertation is focused on trying to answer these key questions in the context of Computer Vision and, in particular, Object Recognition, a task that has been heavily revolutionized by recent advances in the field. Practically speaking, these answers are based on an exhaustive comparison between two, very different, deep learning techniques on the aforementioned task: Convolutional Neural Network (CNN) and Hierarchical Temporal memory (HTM). They stand for two different approaches and points of view within the big hat of deep learning and are the best choices to understand and point out strengths and weaknesses of each of them. CNN is considered one of the most classic and powerful supervised methods used today in machine learning and pattern recognition, especially in object recognition. CNNs are well received and accepted by the scientific community and are already deployed in large corporation like Google and Facebook for solving face recognition and image auto-tagging problems. HTM, on the other hand, is known as a new emerging paradigm and a new meanly-unsupervised method, that is more biologically inspired. It tries to gain more insights from the computational neuroscience community in order to incorporate concepts like time, context and attention during the learning process which are typical of the human brain. In the end, the thesis is supposed to prove that in certain cases, with a lower quantity of data, HTM can outperform CNN.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Java Enterprise Applications (JEAs) are complex software systems written using multiple technologies. Moreover they are usually distributed systems and use a database to deal with persistence. A particular problem that appears in the design of these systems is the lack of a rich business model. In this paper we propose a technique to support the recovery of such rich business objects starting from anemic Data Transfer Objects (DTOs). Exposing the code duplications in the application's elements using the DTOs we suggest which business logic can be moved into the DTOs from the other classes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper provides an insight to the development of a process model for the essential expansion of the automatic miniload warehouse. The model is based on the literature research and covers four phases of a warehouse expansion: the preparatory phase, the current state analysis, the design phase and the decision making phase. In addition to the literature research, the presented model is based on a reliable data set and can be applicable with a reasonable effort to ensure the informed decision on the warehouse layout. The model is addressed to users who are usually employees of logistics department, and is oriented on the improvement of the daily business organization combined with the warehouse expansion planning.