970 resultados para crystal structures
Resumo:
The multiferroic behavior with ion modification using rare-earth cations on crystal structures, along with the insulating properties of BiFeO3 (BFO) thin films was investigated using piezoresponse force microscopy. Rare-earth-substituted BFO films with chemical compositions of (Bi 1.00-xRExFe1.00O3 (x=0; 0.15), RE=La and Nd were fabricated on Pt (111)/Ti/SiO2/Si substrates using a chemical solution deposition technique. A crystalline phase of tetragonal BFO was obtained by heat treatment in ambient atmosphere at 500 °C for 2 h. Ion modification using La3+ and Nd3+ cations lowered the leakage current density of the BFO films at room temperature from approximately 10-6 down to 10-8 A/cm2. The observed improved magnetism of the Nd3+ substituted BFO thin films can be related to the plate-like morphology in a nanometer scale. We observed that various types of domain behavior such as 71° and 180° domain switching, and pinned domain formation occurred. The maximum magnetoelectric coefficient in the longitudinal direction was close to 12 V/cm Oe. © 2012 Elsevier Ltd and Techna Group S.r.l.
Resumo:
The coordination compounds [Ni(μ-mal)(apy)2(H 2O)]·2.8H2O (1), [Mn(μ-mal)(H2O) 2] (2), (apyH)2[Cu(μ-mal)2] (3) and (apyH)2[Co(mal)2(H2O)2] (4) (mal = malonate, apy = p-aminopyridine) have been synthesized and characterized by elemental analysis, vibrational spectroscopy, single crystal X-ray diffraction and magnetometry. With exception of 4, the malonate group acts as bridging ligand leading to the formation of one-dimensional polymeric chains. In compound 1 it was observed the coordination of the p-aminopyridine in the axial positions of the distorted octahedral coordination sphere. The solid-state structure exhibits a high complex 3D network formed by several supramolecular interactions. Magnetic properties were determined for all members of the series and indicate that the materials behave are normal paramagnets, except the Mn polymer 2 which exhibits an antiferromagnetic ground state. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Neste trabalho realizamos um estudo sobre a influência dos dopantes Mn+2, Mg+2 e Cu+2 nas estruturas cristalinas de cristais de Sulfato de Níquel hexahidratado (NSH) e L Asparagina Monohidratada (LAM). A introdução de dopantes em uma rede cristalina pode alterar suas propriedades físicas ou seu hábito de crescimento. Estas alterações podem favorecer as aplicações tecnológicas destes cristas em diversas áreas como medicina, agricultura, óptica e eletrônica. Os cristais de NSH foram crescidos pelo método da evaporação lenta do solvente e dopados com íons de Mn+2 e Mg+2, resultando em cristais de boa qualidade. Realizamos medidas de Difração de raios X de policristais nos cristais puros e dopados e a partir dos resultados obtidos fizemos refinamentos, usando o método de Rietiveld, onde foi observado que os cristais dopados apresentavam a mesma estrutura tetragonal e grupo espacial que o cristal puro, havendo uma pequena mudança em seus parâmetros de rede e volume de suas células unitárias. Observamos que a introdução de dopantes causou alterações nos comprimentos das ligações e nos ângulos entre os átomos de níquel e oxigênio, isso pode explicar porque as temperaturas de desidratação dos cristais de NSH:Mg e NSH:Mn são maiores que a do NSH puro. Usamos a técnica de Difração Mútipla de raios X com radiação síncroton em diferentes energias na estação de trabalho XRD1, do Laboratorio Nacional de Luz Síncroton (LNLS) a fim de identificarmos possíveis mudanças nas estruturas dos cristais dopados de Sulfato de Níquel e de L Asparagina. Os diagramas Renninger mostram mudanças na intensidade, perfil e posições dos picos secundários dos cristais dopados causadas pela introdução dos dopantes. Os cristais de L Asparagina Monohidratada foram crescidos pelo método da evaporação lenta do solvente, sendo dopados com íons de Cu+2. As medidas de difração múltipla mostram que o cristal dopado possui a mesma estrutura ortorrômbica que o cristal puro. Foram detectadas mudanças nas intensidades, assim como, nas posições e perfil de picos secundários no diagramas Renninger para o cristal dopado. Nossos resultados indicam que o mecanismo de incorporação dos íons de Cu+2 na rede cristalina da L Asparagina Monohidratada ocorre de forma intersticial.
Resumo:
Pós-graduação em Ciências Biológicas (Genética) - IBB
Resumo:
Pós-graduação em Química - IQ
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Glycosomes are peroxisome-related organelles found in all kinetoplastid protists, including the human pathogenic species of the family Trypanosomatidae: Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. Glycosomes are unique in containing the majority of the glycolytic/gluconeogenic enzymes, but they also possess enzymes of several other important catabolic and anabolic pathways. The different metabolic processes are connected by shared co-factors and some metabolic intermediates, and their relative importance differs between the parasites or their distinct life-cycle stages, dependent on the environmental conditions encountered. By genetic or chemical means, a variety of glycosomal enzymes participating in different processes have been validated as drug targets. For several of these enzymes, as well as others that are likely crucial for proliferation, viability or virulence of the parasites, inhibitors have been obtained by different approaches such as compound libraries screening or design and synthesis. The efficacy and selectivity of some initially obtained inhibitors of parasite enzymes were further optimized by structure-activity relationship analysis, using available protein crystal structures. Several of the inhibitors cause growth inhibition of the clinically relevant stages of one or more parasitic trypanosomatid species and in some cases exert therapeutic effects in infected animals. The integrity of glycosomes and proper compartmentalization of at least several matrix enzymes is also crucial for the viability of the parasites. Therefore, proteins involved in the assembly of the organelles and transmembrane passage of substrates and products of glycosomal metabolism offer also promise as drug targets. Natural products with trypanocidal activity by affecting glycosomal integrity have been reported.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Atenolol is the most used drug in Brazil to hypertension treatment. Two crystal structures are known for this molecule: a racemic form (R,S)-atenolol and a pure form S-atenolol. The racemic form is found in commercial tablets. X-ray powder diffraction (XRD) is an adequate tool to study crystalline structures including drugs. Using the Rietveld Method with XRD data it is possible to quantify the crystalline structures existing in the raw material. Other methods like Le Bail and Pawley can be used to the profile fit and phases identification. For this work we analyzed three tablets of atenolol, two generics and the reference (materials were purchased from a drugstore at the city of Araraquara). These tablets were analyzed by Rietveld, Le Bail and Pawley methods. All tablets exhibited the racemic mixture API (R,S)-atenolol. Some crystalline excipients could be characterized: magnesium carbonate hydrate, lactose monohydrate and talc. The conclusion is that the three methods can be efficiently used to characterize the three atenolol tablets.
Resumo:
The albendazole and mebendazole drugs are benzimidazole derivatives and belong to the anthelmintic class. These drugs are particularly recommended for the treatment against worms present in the gastrointestinal tract of animals and humans, by acting directly on the worm metabolism. The need for thermally study drugs is related to all the parameters that these analyzes include: presence or absence of polymorphs, possible changes in the crystallinity of the drugs, as well as the quality control during the manufacturing process thereof. In this study the thermal behavior of anthelmintic albendazole and commercial mebendazole and its recrystallisation in organic solvents, such as acetic acid and formic acid in dimethylformamide to mebendazole, and albendazole were studied using TG-DSC techniques, TG-FTIR, FTIR and XRD. TG-DSC techniques were used so it could collect information about the thermal stability of the compounds steps for thermal decomposition process and also prove its melting temperature. For recrystallization of drugs in organic solvents, the TG-DSC curves were analyzed to compare and determine that the occurrence of polymorphs. The coupled TG-FTIR technique allowed the analysis of volatile products which were released during the thermal decomposition of the commercial mebendazole. The absorption spectroscopy in the infrared region was performed to mebendazole, and albendazole in order to show the difference in functional groups of both, comparing the spectra with commercial drugs and see if there was recrystallized changes in the absorption band where the drug was recrystallized or when heated. The diffraction technique by powder X-ray method was used for comparison of the crystal structures of commercial drugs and recrystallization in organic solvents to identify changes in crystallinity both, which might suggest the formation of polymorphs
Resumo:
Phospholipases D (PLDs), the major dermonecrotic factors from brown spider venoms, trigger a range of biological reactions both in vitro and in vivo. Despite their clinical relevance in loxoscelism, structural data is restricted to the apo-form of these enzymes, which has been instrumental in understanding the functional differences between the class I and II spider PLDs. The crystal structures of the native class II PLD from Loxosceles intermedia complexed with myo-inositol 1-phosphate and the inactive mutant H12A complexed with fatty acids indicate the existence of a strong ligand-dependent conformation change of the highly conserved aromatic residues, Tyr 223 and Trp225 indicating their roles in substrate binding. These results provided insights into the structural determinants for substrate recognition and binding by class II PLDs.
Resumo:
Endoglucanases are enzymes that hydrolyze cellulose and are important components of the cellulolytic complex. In contrast to other members of the complex, they cleave internal beta-1,4-glycosidic bonds in the cellulose polymer, allowing cellulose to be used as an energy source. Since biomass is an important renewable source of energy, the structural and functional characterization of these enzymes is of interest. In this study, endoglucanase III from Trichoderma harzianum was produced in Pichia pastoris and purified. Crystals belonging to the orthorhombic space group P212121, with unit-cell parameters a = 47.54, b = 55.57, c = 157.3 angstrom, were obtained by the sitting-drop vapour-diffusion method and an X-ray diffraction data set was collected to 2.07 angstrom resolution.