874 resultados para corpus luteum
Resumo:
It is a big challenge to guarantee the quality of discovered relevance features in text documents for describing user preferences because of the large number of terms, patterns, and noise. Most existing popular text mining and classification methods have adopted term-based approaches. However, they have all suffered from the problems of polysemy and synonymy. Over the years, people have often held the hypothesis that pattern-based methods should perform better than term-based ones in describing user preferences, but many experiments do not support this hypothesis. The innovative technique presented in paper makes a breakthrough for this difficulty. This technique discovers both positive and negative patterns in text documents as higher level features in order to accurately weight low-level features (terms) based on their specificity and their distributions in the higher level features. Substantial experiments using this technique on Reuters Corpus Volume 1 and TREC topics show that the proposed approach significantly outperforms both the state-of-the-art term-based methods underpinned by Okapi BM25, Rocchio or Support Vector Machine and pattern based methods on precision, recall and F measures.
Resumo:
This paper presents a novel two-stage information filtering model which combines the merits of term-based and pattern- based approaches to effectively filter sheer volume of information. In particular, the first filtering stage is supported by a novel rough analysis model which efficiently removes a large number of irrelevant documents, thereby addressing the overload problem. The second filtering stage is empowered by a semantically rich pattern taxonomy mining model which effectively fetches incoming documents according to the specific information needs of a user, thereby addressing the mismatch problem. The experiments have been conducted to compare the proposed two-stage filtering (T-SM) model with other possible "term-based + pattern-based" or "term-based + term-based" IF models. The results based on the RCV1 corpus show that the T-SM model significantly outperforms other types of "two-stage" IF models.
Resumo:
Relevance Feedback (RF) has been proven very effective for improving retrieval accuracy. Adaptive information filtering (AIF) technology has benefited from the improvements achieved in all the tasks involved over the last decades. A difficult problem in AIF has been how to update the system with new feedback efficiently and effectively. In current feedback methods, the updating processes focus on updating system parameters. In this paper, we developed a new approach, the Adaptive Relevance Features Discovery (ARFD). It automatically updates the system's knowledge based on a sliding window over positive and negative feedback to solve a nonmonotonic problem efficiently. Some of the new training documents will be selected using the knowledge that the system currently obtained. Then, specific features will be extracted from selected training documents. Different methods have been used to merge and revise the weights of features in a vector space. The new model is designed for Relevance Features Discovery (RFD), a pattern mining based approach, which uses negative relevance feedback to improve the quality of extracted features from positive feedback. Learning algorithms are also proposed to implement this approach on Reuters Corpus Volume 1 and TREC topics. Experiments show that the proposed approach can work efficiently and achieves the encouragement performance.
Resumo:
In this paper we extend the concept of speaker annotation within a single-recording, or speaker diarization, to a collection wide approach we call speaker attribution. Accordingly, speaker attribution is the task of clustering expectantly homogenous intersession clusters obtained using diarization according to common cross-recording identities. The result of attribution is a collection of spoken audio across multiple recordings attributed to speaker identities. In this paper, an attribution system is proposed using mean-only MAP adaptation of a combined-gender UBM to model clusters from a perfect diarization system, as well as a JFA-based system with session variability compensation. The normalized cross-likelihood ratio is calculated for each pair of clusters to construct an attribution matrix and the complete linkage algorithm is employed to conduct clustering of the inter-session clusters. A matched cluster purity and coverage of 87.1% was obtained on the NIST 2008 SRE corpus.
Resumo:
This special issue presents an excellent opportunity to study applied epistemology in public policy. This is an important task because the arena of public policy is the social domain in which macro conditions for ‘knowledge work’ and ‘knowledge industries’ are defined and created. We argue that knowledge-related public policy has become overly concerned with creating the politico-economic parameters for the commodification of knowledge. Our policy scope is broader than that of Fuller (1988), who emphasizes the need for a social epistemology of science policy. We extend our focus to a range of policy documents that include communications, science, education and innovation policy (collectively called knowledge-related public policy in acknowledgement of the fact that there is no defined policy silo called ‘knowledge policy’), all of which are central to policy concerned with the ‘knowledge economy’ (Rooney and Mandeville, 1998). However, what we will show here is that, as Fuller (1995) argues, ‘knowledge societies’ are not industrial societies permeated by knowledge, but that knowledge societies are permeated by industrial values. Our analysis is informed by an autopoietic perspective. Methodologically, we approach it from a sociolinguistic position that acknowledges the centrality of language to human societies (Graham, 2000). Here, what we call ‘knowledge’ is posited as a social and cognitive relationship between persons operating on and within multiple social and non-social (or, crudely, ‘physical’) environments. Moreover, knowing, we argue, is a sociolinguistically constituted process. Further, we emphasize that the evaluative dimension of language is most salient for analysing contemporary policy discourses about the commercialization of epistemology (Graham, in press). Finally, we provide a discourse analysis of a sample of exemplary texts drawn from a 1.3 million-word corpus of knowledge-related public policy documents that we compiled from local, state, national and supranational legislatures throughout the industrialized world. Our analysis exemplifies a propensity in policy for resorting to technocratic, instrumentalist and anti-intellectual views of knowledge in policy. We argue that what underpins these patterns is a commodity-based conceptualization of knowledge, which is underpinned by an axiology of narrowly economic imperatives at odds with the very nature of knowledge. The commodity view of knowledge, therefore, is flawed in its ignorance of the social systemic properties of knowing’.
Resumo:
In this paper, I show how new spaces are being prefigured for colonisation in the language of contemporary technology policy. Drawing on a corpus of 1.3 million words collected from technology policy centres throughout the world, I show the role of policy language in creating the foundations of an emergent form of political economy. The analysis is informed by principles from critical discourse analysis (CDA) and classical political economy. It foregrounds a functional aspect of language called process metaphor to show how aspects of human activity are prefigured for mass commodification by the manipulation of irrealis spaces. I also show how the fundamental element of any new political economy, the property element, is being largely ignored. The potential creation of a global space as concrete as landed property – electromagnetic spectrum – has significant ramifications for the future of social relations in any global “knowledge economy”.
Resumo:
This paper presents a framework for evaluating information retrieval of medical records. We use the BLULab corpus, a large collection of real-world de-identified medical records. The collection has been hand coded by clinical terminol- ogists using the ICD-9 medical classification system. The ICD codes are used to devise queries and relevance judge- ments for this collection. Results of initial test runs using a baseline IR system are provided. Queries and relevance judgements are online to aid further research in medical IR. Please visit: http://koopman.id.au/med_eval.
Resumo:
RÉSUMÉ. La prise en compte des troubles de la communication dans l’utilisation des systèmes de recherche d’information tels qu’on peut en trouver sur le Web est généralement réalisée par des interfaces utilisant des modalités n’impliquant pas la lecture et l’écriture. Peu d’applications existent pour aider l’utilisateur en difficulté dans la modalité textuelle. Nous proposons la prise en compte de la conscience phonologique pour assister l’utilisateur en difficulté d’écriture de requêtes (dysorthographie) ou de lecture de documents (dyslexie). En premier lieu un système de réécriture et d’interprétation des requêtes entrées au clavier par l’utilisateur est proposé : en s’appuyant sur les causes de la dysorthographie et sur les exemples à notre disposition, il est apparu qu’un système combinant une approche éditoriale (type correcteur orthographique) et une approche orale (système de transcription automatique) était plus approprié. En second lieu une méthode d’apprentissage automatique utilise des critères spécifiques , tels que la cohésion grapho-phonémique, pour estimer la lisibilité d’une phrase, puis d’un texte. ABSTRACT. Most applications intend to help disabled users in the information retrieval process by proposing non-textual modalities. This paper introduces specific parameters linked to phonological awareness in the textual modality. This will enhance the ability of systems to deal with orthographic issues and with the adaptation of results to the reader when for example the reader is dyslexic. We propose a phonology based sentence level rewriting system that combines spelling correction, speech synthesis and automatic speech recognition. This has been evaluated on a corpus of questions we get from dyslexic children. We propose a specific sentence readability measure that involves phonetic parameters such as grapho-phonemic cohesion. This has been learned on a corpus of reading time of sentences read by dyslexic children.
Resumo:
Since manually constructing domain-specific sentiment lexicons is extremely time consuming and it may not even be feasible for domains where linguistic expertise is not available. Research on the automatic construction of domain-specific sentiment lexicons has become a hot topic in recent years. The main contribution of this paper is the illustration of a novel semi-supervised learning method which exploits both term-to-term and document-to-term relations hidden in a corpus for the construction of domain specific sentiment lexicons. More specifically, the proposed two-pass pseudo labeling method combines shallow linguistic parsing and corpusbase statistical learning to make domain-specific sentiment extraction scalable with respect to the sheer volume of opinionated documents archived on the Internet these days. Another novelty of the proposed method is that it can utilize the readily available user-contributed labels of opinionated documents (e.g., the user ratings of product reviews) to bootstrap the performance of sentiment lexicon construction. Our experiments show that the proposed method can generate high quality domain-specific sentiment lexicons as directly assessed by human experts. Moreover, the system generated domain-specific sentiment lexicons can improve polarity prediction tasks at the document level by 2:18% when compared to other well-known baseline methods. Our research opens the door to the development of practical and scalable methods for domain-specific sentiment analysis.
Resumo:
Models of word meaning, built from a corpus of text, have demonstrated success in emulating human performance on a number of cognitive tasks. Many of these models use geometric representations of words to store semantic associations between words. Often word order information is not captured in these models. The lack of structural information used by these models has been raised as a weakness when performing cognitive tasks. This paper presents an efficient tensor based approach to modelling word meaning that builds on recent attempts to encode word order information, while providing flexible methods for extracting task specific semantic information.
Resumo:
Information has no value unless it is accessible. Information must be connected together so a knowledge network can then be built. Such a knowledge base is a key resource for Internet users to interlink information from documents. Information retrieval, a key technology for knowledge management, guarantees access to large corpora of unstructured text. Collaborative knowledge management systems such as Wikipedia are becoming more popular than ever; however, their link creation function is not optimized for discovering possible links in the collection and the quality of automatically generated links has never been quantified. This research begins with an evaluation forum which is intended to cope with the experiments of focused link discovery in a collaborative way as well as with the investigation of the link discovery application. The research focus was on the evaluation strategy: the evaluation framework proposal, including rules, formats, pooling, validation, assessment and evaluation has proved to be efficient, reusable for further extension and efficient for conducting evaluation. The collection-split approach is used to re-construct the Wikipedia collection into a split collection comprising single passage files. This split collection is proved to be feasible for improving relevant passages discovery and is devoted to being a corpus for focused link discovery. Following these experiments, a mobile client-side prototype built on iPhone is developed to resolve the mobile Search issue by using focused link discovery technology. According to the interview survey, the proposed mobile interactive UI does improve the experience of mobile information seeking. Based on this evaluation framework, a novel cross-language link discovery proposal using multiple text collections is developed. A dynamic evaluation approach is proposed to enhance both the collaborative effort and the interacting experience between submission and evaluation. A realistic evaluation scheme has been implemented at NTCIR for cross-language link discovery tasks.
Resumo:
Unstructured text data, such as emails, blogs, contracts, academic publications, organizational documents, transcribed interviews, and even tweets, are important sources of data in Information Systems research. Various forms of qualitative analysis of the content of these data exist and have revealed important insights. Yet, to date, these analyses have been hampered by limitations of human coding of large data sets, and by bias due to human interpretation. In this paper, we compare and combine two quantitative analysis techniques to demonstrate the capabilities of computational analysis for content analysis of unstructured text. Specifically, we seek to demonstrate how two quantitative analytic methods, viz., Latent Semantic Analysis and data mining, can aid researchers in revealing core content topic areas in large (or small) data sets, and in visualizing how these concepts evolve, migrate, converge or diverge over time. We exemplify the complementary application of these techniques through an examination of a 25-year sample of abstracts from selected journals in Information Systems, Management, and Accounting disciplines. Through this work, we explore the capabilities of two computational techniques, and show how these techniques can be used to gather insights from a large corpus of unstructured text.
Resumo:
This study examined the everyday practices of families within the context of family mealtime to investigate how members accomplished mealtime interactions. Using an ethnomethodological approach, conversation analysis and membership categorization analysis, the study investigated the interactional resources that family members used to assemble their social orders moment by moment during family mealtimes. While there is interest in mealtimes within educational policy, health research and the media, there remain few studies that provide fine-grained detail about how members produce the social activity of having a family meal. Findings from this study contribute empirical understandings about families and family mealtime. Two families with children aged 2 to 10 years were observed as they accomplished their everyday mealtime activities. Data collection took place in the family homes where family members video recorded their naturally occurring mealtimes. Each family was provided with a video camera for a one-month period and they decided which mealtimes they recorded, a method that afforded participants greater agency in the data collection process and made available to the analyst a window into the unfolding of the everyday lives of the families. A total of 14 mealtimes across the two families were recorded, capturing 347 minutes of mealtime interactions. Selected episodes from the data corpus, which includes centralised breakfast and dinnertime episodes, were transcribed using the Jeffersonian system. Three data chapters examine extended sequences of family talk at mealtimes, to show the interactional resources used by members during mealtime interactions. The first data chapter explores multiparty talk to show how the uniqueness of the occasion of having a meal influences turn design. It investigates the ways in which members accomplish two-party talk within a multiparty setting, showing how one child "tells" a funny story to accomplish the drawing together of his brothers as an audience. As well, this chapter identifies the interactional resources used by the mother to cohort her children to accomplish the choralling of grace. The second data chapter draws on sequential and categorical analysis to show how members are mapped to a locally produced membership category. The chapter shows how the mapping of members into particular categories is consequential for social order; for example, aligning members who belong to the membership category "had haircuts" and keeping out those who "did not have haircuts". Additional interactional resources such as echoing, used here to refer to the use of exactly the same words, similar prosody and physical action, and increasing physical closeness, are identified as important to the unfolding talk particularly as a way of accomplishing alignment between the grandmother and grand-daughter. The third and final data analysis chapter examines topical talk during family mealtimes. It explicates how members introduce topics of talk with an orientation to their co-participant and the way in which the take up of a topic is influenced both by the sequential environment in which it is introduced and the sensitivity of the topic. Together, these three data chapters show aspects of how family members participated in family mealtimes. The study contributes four substantive themes that emerged during the analytic process and, as such, the themes reflect what the members were observed to be doing. The first theme identified how family knowledge was relevant and consequential for initiating and sustaining interaction during mealtime with, for example, members buying into the talk of other members or being requested to help out with knowledge about a shared experience. Knowledge about members and their activities was evident with the design of questions evidencing an orientation to coparticipant’s knowledge. The second theme found how members used topic as a resource for social interaction. The third theme concerned the way in which members utilised membership categories for producing and making sense of social action. The fourth theme, evident across all episodes selected for analysis, showed how children’s competence is an ongoing interactional accomplishment as they manipulated interactional resources to manage their participation in family mealtime. The way in which children initiated interactions challenges previous understandings about children’s restricted rights as conversationalists. As well as making a theoretical contribution, the study offers methodological insight by working with families as research participants. The study shows the procedures involved as the study moved from one where the researcher undertook the decisions about what to videorecord to offering this decision making to the families, who chose when and what to videorecord of their mealtime practices. Evident also are the ways in which participants orient both to the video-camera and to the absent researcher. For the duration of the mealtime the video-camera was positioned by the adults as out of bounds to the children; however, it was offered as a "treat" to view after the mealtime was recorded. While situated within family mealtimes and reporting on the experiences of two families, this study illuminates how mealtimes are not just about food and eating; they are social. The study showed the constant and complex work of establishing and maintaining social orders and the rich array of interactional resources that members draw on during family mealtimes. The family’s interactions involved members contributing to building the social orders of family mealtime. With mealtimes occurring in institutional settings involving young children, such as long day care centres and kindergartens, the findings of this study may help educators working with young children to see the rich interactional opportunities mealtimes afford children, the interactional competence that children demonstrate during mealtimes, and the important role/s that adults may assume as co-participants in interactions with children within institutional settings.
Resumo:
It is a big challenge to guarantee the quality of discovered relevance features in text documents for describing user preferences because of the large number of terms, patterns, and noise. Most existing popular text mining and classification methods have adopted term-based approaches. However, they have all suffered from the problems of polysemy and synonymy. Over the years, people have often held the hypothesis that pattern-based methods should perform better than term- based ones in describing user preferences, but many experiments do not support this hypothesis. This research presents a promising method, Relevance Feature Discovery (RFD), for solving this challenging issue. It discovers both positive and negative patterns in text documents as high-level features in order to accurately weight low-level features (terms) based on their specificity and their distributions in the high-level features. The thesis also introduces an adaptive model (called ARFD) to enhance the exibility of using RFD in adaptive environment. ARFD automatically updates the system's knowledge based on a sliding window over new incoming feedback documents. It can efficiently decide which incoming documents can bring in new knowledge into the system. Substantial experiments using the proposed models on Reuters Corpus Volume 1 and TREC topics show that the proposed models significantly outperform both the state-of-the-art term-based methods underpinned by Okapi BM25, Rocchio or Support Vector Machine and other pattern-based methods.
Resumo:
It is a big challenge to acquire correct user profiles for personalized text classification since users may be unsure in providing their interests. Traditional approaches to user profiling adopt machine learning (ML) to automatically discover classification knowledge from explicit user feedback in describing personal interests. However, the accuracy of ML-based methods cannot be significantly improved in many cases due to the term independence assumption and uncertainties associated with them. This paper presents a novel relevance feedback approach for personalized text classification. It basically applies data mining to discover knowledge from relevant and non-relevant text and constraints specific knowledge by reasoning rules to eliminate some conflicting information. We also developed a Dempster-Shafer (DS) approach as the means to utilise the specific knowledge to build high-quality data models for classification. The experimental results conducted on Reuters Corpus Volume 1 and TREC topics support that the proposed technique achieves encouraging performance in comparing with the state-of-the-art relevance feedback models.