969 resultados para copper-nickel alloys


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity of strontium in liquid Al-Sr alloys (X(Sr) less-than-or-equal-to 0.17) at 1323 K has been determined using the Knudsen effusion-mass loss technique. At higher concentrations (X(Sr) greater-than-or-equal-to 0.28), the activity of strontium has been determined by the pseudoisopiestic technique. Activity of aluminium has been derived by Gibbs-Duhem integration. The concentration - concentration structure factor of Bhatia and Thornton at zero wave vector has been computed from the thermodynamic data. The behaviour of the mean square thermal fluctuation in composition and the thermodynamic mixing functions suggest association tendencies in the liquid state. The associated solution model with Al2Sr as the predominant complex can account for the properties of the liquid alloy. Thermodynamic data for the intermetallic compunds in the Al-Sr system have been derived using the phase diagram and the Gibbs' energy and enthalpy of mixing of liquid alloys. The data indicate the need for redetermination of the phase diagram near the strontium-rich corner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Explored in this study is an electronically mediated reaction (EMR) route for the production of niobium powder using calcium as a reductant for niobium oxide (Nb2O5). Feed material, Nb2O5, and reductant calcium alloy containing aluminum and nickel were charged into electronically isolated locations in a molten salt (e.g. CaCl2) at 1173 K. The current flow through an external path between the feed and reductant locations was monitored. A current approximately 0.4 A was measured during the reaction in the external circuit connecting cathode and anode location. Niobium powder with low aluminum and nickel content was obtained although liquid Ca–Al–Ni alloy was used as the reductant. This clearly demonstrates that niobium metal powder can be produced by an electronically mediated reaction (EMR), without direct physical contact between feed (Nb2O5) and reductant (calcium). Mechanism of calciothermic reduction of Nb2O5 in the molten salt is discussed using an isothermal chemical potential diagram.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An isothermal section of the phase diagram for (silver + rhodium + oxygen) at T = 1173 K has been established by equilibration of samples representing twelve different compositions, and phase identification after quenching by optical and scanning electron microscopy (s.e.m.), X-ray diffraction (x.r.d.), and energy dispersive analysis of X-rays (e.d.x.), Only one ternary oxide, AgRhO2, was found to be stable and a three phase region involving Ag, AgRhO2 and Rh2O3 was identified. The thermodynamic properties of AgRhO2 were measured using a galvanic cell in the temperature range 980 K to 1320 K. Yttria-stabilized zirconia was used as the solid electrolyte and pure oxygen gas at a pressure of 0.1 MPa was used as the reference electrode. The Gibbs free energy of formation of the ternary oxide from the elements, ΔfGo (AgRhO2), can be represented by two linear equations that join at the melting temperature of silver. In the temperature range 980 K to 1235 K, ΔfGo(AgRhO2)/(J . mol-1) = -249080 + 179.08 T/K (±120). Above the melting temperature of silver, in the temperature range 1235 K to 1320 K, ΔfGo(AgRhO2)/(J . mol-1) = -260400 + 188.24 T/K (±95). The thermodynamic properties of AgRhO2 at T = 298.15 K were evaluated from the high temperature data. The chemical potential diagram for (silver + rhodium + oxygen) at T = 1200 K was also computed on the basis of the results of this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase relations in the system Cu-Eu-O have been determined by equilibrating samples of different average composition at 1200 K and by phase analysis after quenching using optical microscopy (OM), x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray (EDX). The equilibration experiments were conducted in evacuated ampoules and under flowing inert gas and pure oxygen. The Cu-Eu alloys were found to be in equilibrium with EuO. The higher oxides of europium, Eu3O4 and Eu2O3, coexist with metallic copper. Two ternary oxides CuEu2O4 and CuEuO2 were found to be stable. The ternary oxide CuEuO2, with copper in the monovalent state, can coexist with Cu, Cu2O, Eu2O3 and CuEu2O4 in different phase fields. The compound CuEu2O4 can be in equilibrium with Cu2O, CuO, CuEuO2, Eu2O3, and O2 gas under different conditions at 1200 K. Thermodynamic properties of the ternary oxides were determined using three solid-state cells based on yttria-stabilized zirconia as the electrolyte in the temperature range from 875 to 1250 K. The cells essentially measure the oxygen chemical potential in the three-phase fields: Cu+Eu2O3+CuEuO2, Cu2O+CuEuO2+CuEu2O4, and Eu2O3+CuEuO2+CuEu2O4. The thermodynamic properties of the ternary oxides can be represented by the equations: $\begin{gathered} {\raise0.5ex\hbox{$Couldn't find \end for begin{gathered} Thermogravimetric analysis (TGA) studies in Ar+O2 mixtures confirmed the results from emf measurements. An oxygen potential diagram for the system Cu-Eu-O at 1200 K was evaluated from the results of this study and information available in the literature on the binary phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attempt has been made to describe the glass forming ability (GFA) of liquid alloys, using the concepts of the short range order (SRO) and middle range order (MRO) characterizing the liquid structure.A new approach to obtain good GFA of liquid alloys is based on the following four main factors: (1) formation of new SRO and competitive correlation with two or more kinds of SROs for crystallization, (2) stabilization of dense random packing by interaction between different types of SRO, (3) formation of stable cluster (SC) or middle range order (MRO) by harmonious coupling of SROs, and (4) difference between SRO characterizing the liquid structure and the near-neighbor environment in the corresponding equilibrium crystalline phases. The atomic volume mismatch estimated from the cube of the atomic radius was found to be a close relation with the minimum solute concentration for glass formation. This empirical guideline enables us to provide the optimum solute concentration for good GFA in some ternary alloys. Model structures, denoted by Bernal type and the Chemical Order type, were again tested in the novel description for the glass structure as a function of solute concentration. We illustrated the related energetics of the completion between crystal embryo and different types of SRO. Recent systematic measurements also provide that thermal diffusivity of alloys in the liquid state may be a good indicator of their GFA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two copper-containing compounds [Cu(3)(mu(3)-OH)(2)-(H(2)O)(2){(SO(3))-C(6)H(3)-(COO)(2)}(CH(3)COO)] , I, and [Cu(5)(mu(3)-OH)(2)(H(2)O)(6){(NO(2))-C(6)H(3)-(COO)(2)}(4)]center dot 5H(2)O, II, were prepared using sulphoisophthalic and nitroisophthalic acids. The removal of the coordinated water molecules in the compounds was investigated using in situ single crystal to single crystal (SCSC) transformation studies, temperature-dependent powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). The efficacy of SCSC transformation studies were established by the observation of dimensionality cross-over from a two-dimensional (I) to a three-dimensional structure, Cu(6)(mu(3)-OH)(4){(SO(3))-C(6)H(3)-(COO)(2)}(2)(CH(3)COO)(2), Ia, during the removal of the coordinated water molecules. Compound H exhibited a structural reorganization forming Cu(5)(mu(2)-OH)(2){(NO(2))C(6)H(3)-(COO)(2))(4)], Ha, possessing trimeric (Cu(3)O(12)) and dimeric (Cu(2)O(8)) copper clusters. The PXRD studies indicate that the three-dimensional structure (Ia) is transient and unstable, reverting back to the more stable two-dimensional structure (I) on cooling to room temperature. Compound Ha appears to be more stable at room temperature. The rehydration/dehydration studies using a modified TGA setup suggest complete rehydration of the water molecules, indicating that the water molecules in both compounds are labile. A possible model for the observed changes in the structures has been proposed. Magnetic studies indicate changes in the exchanges between the copper centers in Ha, whereas no such behavior was observed in Ia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epitaxial-Bain-Path and Uniaxial-Bain-Path studies reveal that a B2-CuZr nanowire with Zr atoms on the surface is energetically more stable compared to a B2-CuZr nanowire with Cu atoms on the surface. Nanowires of cross-sectional dimensions in the range of similar to 20-50 are considered. Such stability is also correlated with the initial state of stress in the nanowires. It is also demonstrated here that a more stable structure, i.e., B2-CuZr nanowire with Zr atoms at surface shows improved yield strength compared to B2-CuZr nanowire with Cu atoms at surface site, over range of temperature under both the tensile and the compressive loadings. Nearly 18% increase in the average yield strength under tensile loading and nearly 26% increase in the averaged yield strength under compressive loading are observed for nanowires with various cross-sectional dimensions and temperatures. It is also observed that the B2-CuZr nanowire with Cu atom at the surface site shows a decrease in failure/plastic strain with an increase in temperature. On the other hand, B2-CuZr nanowires with Zr at the surface site shows an improvement in failure/plastic strain, specially at higher temperature as compared to the B2-CuZr nanowires which are having Cu atoms at the surface site. Finally, a possible design methodology for an energetically stable nano-structure with improved thermo-mechanical properties via manipulating the surface atom configuration is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experimentally determined apparent vacancy formation energy values in dilute aluminium—silver alloys showed a divergence from calculated values at higher solute fractions. This is explained in terms of a solute—solute interaction energy of the order of 0.10 ev which exists when the binding energy between a vacancy and a solute atom pair is reduced to zero.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temperature ranges of thermal and athermal deformation behaviour of nickel are identified by employing the temperature-dependence of flow-stress and strain-rate cycling data. The results are used to present a unified view of dislocation mechanisms of glide encompassing the two thermally activated and the intermediate athermal regimes of plastic flow.In the low-temperature thermally activated region (<250 K) the strain rate is found to be controlled by the repulsive intersection of glide and forest dislocations, in accordance with current ideas. The athermal stress in this region can be attributed mainly to the presence of strong attractive junctions which are overcome by means of Orowan bowing, a small contribution also coming from the elastic interactions between dislocations. The values of activation area and activation energy obtained in the high-temperature region (> 750 K) negate the operation of a diffusion-controlled mechanism. Instead, the data support a thermal activation model involving unzipping of the attractive junctions. The internal (long-range) stress contribution here results solely from the elastic interactions between dislocations. This view concerning the high-temperature plastic flow is further supported by the observation that the Cottrell–Stokes law is obeyed over large strains in the range 750–1200 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron diffraction and high-resolution electron microscopy have been employed to differentiate among icosahedral, decagonal and crystalline particles that occur in as-cast and rapidly solidified Al-Mn-Cu alloys. The resemblance between decagonal quasicrystals and crystals in their electron diffraction patterns is striking. The crystalline structure is based on the orthorhombic ‘Al3Mn’ structure, but also a new monoclinic phase called ‘X’ has been discovered and described here. The present observations are also closely related to the orthorhombic structures in Al60Mn11Ni4. The occurrence of fine-scale twinning and fragmentation into domains explains the complex diffraction effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline materials exhibit very high strengths compared to conventional materials, but their thermal stability may be poor. Electrodeposition is one of the promising methods for obtaining dense nanomaterials. It is shown that use of two different baths and appropriate conditions enables the production of nano-Ni with properties similar to commercially available materials. Microindentation experiments revealed a four fold increase in hardness value for nano-Ni compared to conventional coarse grained Ni. An improved thermal stability of nano-Ni was observed on co-deposition of nano-Al2O3particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P-aminobenzoate- intercalated copper hydroxysalt was prepared by coprecipitation at high pH (similar to 12). As the pH was reduced to similar to 7 on washing with water, the development of partial positive charge on the amine end of the intercalated anion caused repulsion between the layers leading to delamination and colloidal dispersion of monolayers of copper hydroxysalt in water. The dispersed copper hydroxysalt monolayers were used as precursors for the synthesis of copper(I)/(II) oxide nanoparticles at room temperature. While the hydroxysalt layers yielded spindle-shaped CuO particles when left to stand, they formed hollow spherical nanoparticles of Cu(2)O when treated with an alkaline solution of ascorbic acid.