890 resultados para conducting


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The brush plating technique has been employed for the first time to obtain CdSe films on Ti and conducting glass substrates. These films have been annealed in an argon atmosphere and their structural, optical and photoelectrochemical properties are discussed. The power conversion efficiency has been found to be 7.43% under an illumination of 80 mW cm-2. A peak quantum efficiency of 0.64 is obtained for an incident wavelength of 720 nm. Donor concentration of 3.42 x 10(17) cm-3, electron mobility of 3 cm2 V-1 s-1 and minority carrier diffusion length of 0.013 mum have been obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A boundary layer solution for the conjugate forced convection flow of an electrically conducting fluid over a semi-infinite flat plate in the presence of a transverse magnetic field is presented. The governing nonsimilar partial differential equations are solved numerically using the Keller box method. Values of the temperature profiles of the plate are obtained for various values of the parameters entering the problem and are given in a table and shown on graphs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New vibrational Raman features characteristic to the conductive form of polyaniline have been observed with the near-infrared excitation at 1047 nm. Based on an analogy with the resonance Raman spectrum of Michler's ketone in the lowest excited triplet (T-1) state, we consider these features as due to a dynamic structure of a diimino-1,4-phenylene unit in the polyaniline chain exchanging a positive charge very rapidly. This consideration directly leads to a conducting mechanism in which a positive charge migrates from one nitrogen to the other through the conjugated chain of polyaniline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrasonication of aqueous KI solution is known to yield I2 due to reaction of iodide ions with hydroxyl radicals, which in turn are generated due to cavitation. Based on this conceptual framework, a model has been developed to predict the rate of iodine formation for KI solutions of various concentrations under different gas atmospheres. The model follows the growth and collapse of a gas—vapour cavity using the Rayleigh—Plesset bubble dynamics equation. The bubble is assumed to behave isothermally during its growth phase and a part of the collapse phase. Thereafter it is assumed to collapse adiabatically, yielding high temperatures and pressures. Thermodynamic equilibrium is assumed in the bubble at the end of collapse phase. The contents of the bubble are assumed to mix with the liquid, and the reactor contents are assumed to be well stirred. The model has been verified by conducting experiments with KI solutions of different concentrations and using different gas atmospheres. The model not only explains these results but also the existence of a maximum when Ar---O2 mixtures of different compositions are employed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrasonication of aqueous KI solution is known to yield I2 due to reaction of iodide ions with hydroxyl radicals, which in turn are generated due to cavitation. Based on this conceptual framework, a model has been developed to predict the rate of iodine formation for KI solutions of various concentrations under different gas atmospheres. The model follows the growth and collapse of a gas-vapour cavity using the Rayleigh-Plesset bubble dynamics equation. The bubble is assumed to behave isothermally during its growth phase and a part of the collapse phase. Thereafter it is assumed to collapse adiabatically, yielding high temperatures and pressures. Thermodynamic equilibrium is assumed in the bubble at the end of collapse phase. The contents of the bubble are assumed to mix with the liquid, and the reactor contents are assumed to be well stirred. The model has been verified by conducting experiments with KI solutions of different concentrations and using different gas atmospheres. The model not only explains these results but also the existence of a maximum when Ar-O2 mixtures of different compositions are employed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ac conductivity and dielectric behaviors of sodium borovanadate glasses have been studied over wide ranges of composition and frequency. The de activation energies calculated from the complex impedance plots decrease linearly with the Na2O concentration, indicating that ionic conductivity dominates in these glasses. The possible origin of low-temperature departures of conductivity curves (from linearity) of vanadium-rich glasses in log sigma versus 1/T plots is discussed. The ac conductivities have been fitted to the Almond-West type power law expression with use of a single value of s. It is found that in most of the glasses s exhibits a temperature-dependent minimum. The dielectric data are converted into moduli (M*) and are analyzed using the Kohlrausch-William-Watts stretched exponential function, The activation barriers, W, calculated from the temperature-dependent dielectric loss peaks compare well with the activation barriers calculated from the de conductivity plots. The stretching exponent beta is found to be temperature independent and is not likely to be related as in the equation beta = 1 - s, An attempt is made to elucidate the origin of the stretching phenomena. It appears that either a model of the increased contribution of polarization energy (caused by the increased modifier concentration) and hence the increased monopole-induced dipole interactions or a model based on increased intercationic interactions can explain the slowing down of the primitive relaxation in ionically conducting glasses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated tunneling conductances in disordered, normally conducting perovskite oxides close to the metal�insulator transition. We show that the normal state tunneling conductance of perovskite oxides can be cast in a general form G(V) = G0[1 + curly logical orV/V*curly logical orn] with 1?n?0.5 and where V* is an intrinsic energy scale. The exponent n graduall y increases from 0.5 to 1 as the metal-insulator (M-I) transition is approached. In the high-Tc Bi(2212) cuprates, the normally observed, linear G(V)(n=1) can be made sub-linear (n<1) by substitution of Ca with Y. From the similarity of the linear conductances, we suggest proximity to the M-I transition as a likely cause for this G(V)logical or, bar below V dependence. In systems showing linear conductances (nreverse similar, equals1), we find that ?G/?Vreverse similar, equalsG?0 with ?reverse similar, equals 1 and the intrinsic energy scale V*reverse similar, equals25�75 meV in the different oxides investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes the electrical switching behavior of three telluride based amorphous chalcogenide thin film samples, Al-Te, Ge-Se-Te and Ge-Te-Si. These amorphous thin films are made using bulk glassy ingots, prepared by conventional melt quenching technique, using flash evaporation technique; while Al-Te sample has been coated in coplanar electrode geometry, Ge-Se-Te and Ge-Te-Si samples have been deposited with sandwich electrodes. It is observed that all the three samples studied, exhibit memory switching behavior in thin film form, with Ge-Te-Si sample exhibiting a faster switching characteristic. The difference seen in the switching voltages of the three samples studied has been understood on the basis of difference in device geometry and thickness. Scanning electron microscopic image of switched region of a representative Ge15Te81Si4 sample shows a structural change and formation of crystallites in the electrode region, which is responsible for making a conducting channel between the two electrodes during switching.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design of a solid electrolyte that permits the use of dissimilar gas electrodes in an electrochemical cell is presented. It consists of a functionally gradient material with spatial variation in composition. The activity of the conducting ion is fixed at each electrode using different gas species. The system chosen for demonstrating the concept consists of a solid solution between K2CO3 and K2SO4. The composition of the solid solution varies from pure K2CO3 in contact with a CO2 + O2 gas mixture at one electrode to pure K2SO4 exposed to a mixture of SO3 + SO2 + O2 at the other. Two types of composition profiles are studied, one with monotonic variation in composition and the other with extrema. The e.m.f. of the cells is studied as a function of temperature and composition of the gas mixture at each electrode. The results indicate that the e.m.f. is determined primarily by the difference in the chemical potential of potassium at the two electrodes. The diffusion potential caused by ionic concentration gradients in the electrolyte appears to be negligible when the corresponding ionic transport numbers are insignificant. Studies on the response characteristics of the cell based on the gradient electrolyte indicate that the nature of the variation in composition of the electrolyte has only a minor effect on the time evolution of e.m.f. The gradient solid electrolytes have potential application in multielement galvanic sensors at high temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amorphous conducting carbon films are prepared by plasma assisted chemical vapour deposition and their d.c. conductivity (similar to 100 Scm(-1)) is studied from 300K down to 4.2K. The films were irradiated by high energy ion beam(I+13, 170 MeV) with a dose of 10(13) ions/cm(2). As a result a marked decrease in conductivity by two to three orders in magnitude was observed. The structural changes and the defects in the films caused by ion irradiation are studied using photoluminescence, persistent photoconductivity, and ESR spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hot workability of an Al-Mg-Si alloy has been studied by conducting constant strain-rate compression tests. The temperature range and strain-rate regime selected for the present study were 300-550 degrees C and 0.001-1 s(-1), respectively. On the basis of true stress data, the strain-rate sensitivity values were calculated and used for establishing processing maps following the dynamic materials model. These maps delineate characteristic domains of different dissipative mechanisms. Two domains of dynamic recrystallization (DRX) have been identified which are associated with the peak efficiency of power dissipation (34%) and complete reconstitution of as-cast microstructure. As a result, optimum hot ductility is achieved in the DRX domains. The strain rates at which DRX domains occur are determined by the second-phase particles such as Mg2Si precipitates and intermetallic compounds. The alloy also exhibits microstructural instability in the form of localized plastic deformation in the temperature range 300-350 degrees C and at strain rate 1 s(-1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present review articulates the syntheses and properties of industrially important disulfide and tetrasulfide polymers. The diselenide and ditelluride polymers have also been reviewed, for the first time, so that a comprehensive view on the polymers containing group VIA elements can be obtained. The latter two polymers are gaining considerable current attention due to their semi-conducting properties. The emphasis has been made to sift through the developments in the last ten years or so to get the latest flavour in these rapidly developing polymers. We have also attempted to bring to the fore several contradicting results, like, for example, the crystallinity of ditelluride polymers, to clear the mist in such reports. We hope that this review will help those working in the field to assess the progress achieved in this area and that it may also provide useful orientation for those who wish to become involved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of ``smart structured'' conducting polymers and the fabrication of devices using them are important areas of research. However, conducting polymeric materials that are used in devices are susceptible to degradation due to oxygen and moisture. Thus, protection of such devices to ensure long-term stability is always desirable. Polymer nanocomposites are promising materials for the encapsulation of such devices. Therefore, it is important to develop suitable polymer nanocomposites as encapsulation materials to protect such devices. This work presents a technique based on grafting between surface-decorated gamma-alumina nanoparticles and polymer to make nanocomposites that can be used for the encapsulation of devices. Alumina was functionalized with allyltrimethoxysilane and used to conjugate polymer molecules (hydride-terminated polydimethylsiloxane) through a platinum-catalyzed hydrosilylation reaction. Fourier transform infrared spectroscopy, X-ray-photoelectron spectroscopy, and Raman spectroscopy were used to characterize the surface chemistry of the nanoparticles after surface modification. The grafting density of alkene groups on the surface of the modified nanoparticles was calculated using CHN and thermogravimetric analyses. The thermal stability of the composites was also evaluated using thermogravimetric analysis. The nanoindentation technique was used to analyze the mechanical characteristics of the composites. The densities of the composites were evaluated using a density gradient column, and the morphology of the composites was evaluated by scanning electron microscopy. All of our studies reveal that the composites have good thermal stability and mechanical flexibility and, thus, can potentially be used for the encapsulation of organic photovoltaic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

a-Si:H/InSb structures have been fabricated by glow discharge deposition of a-Si on bulk InSb substrates in hydrogen atmosphere. The structure shows interesting switching properties, toggling between a high resistance and a conducting state with OFF to ON resistance ratio of 10(6) at remarkably low threshold voltages of 0.3 V at room temperature. The low threshold voltage for this structure, as compared to the higher switching threshold of about 30 V for other a-Si based structures, has been achieved by the use of InSb as a substrate, capable of high carrier injection. (C) 1997 Published by Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cd(0.75)PS(3)A(0.5)(H2O)(y) [A = Na, K and Cs], synthesized by the ion-exchange intercalation reaction of the insulating layered CdPS3, exhibits interesting electrical properties. The electrical properties are strongly dependent on the extent of hydration of the alkali ion which resides in the interlamellar space. In the potassium and caesium ion-exchanged compounds, y = I, the lattice expansion is similar to 3 Angstrom and the electric response characteristic of a dielectric. In the as prepared A = Na compound, y = 2, the lattice expansion is 5.6 Angstrom, the compound is conducting with a DC conductance of 3 x 10(-5) S cm(-1) at 300 K. Cd0.75PS3Na0.5(H2O)(y), y = 2, on evacuation or on heating looses water, reversibly, to form a y = 1 phase with electrical properties similar to that of the K and Cs ion exchange intercalation compounds.