851 resultados para computer vision face recognition detection voice recognition sistemi biometrici iOS
Resumo:
W5.43(194), a conserved tryptophan residue among G-protein coupled receptors (GPCRs) and cannabinoid receptors (CB), was examined in the present report for its significance in CB2 receptor ligand binding and adenylyl cyclase (AC) activity. Computer modeling postulates that this site in CB2 may be involved in the affinity of WIN55212-2 and SR144528 through aromatic contacts. In the present study, we reported that a CB2 receptor mutant, W5.43(194)Y, which had a tyrosine (Y) substitution for tryptophan (W), retained the binding affinity for CB agonist CP55940, but reduced binding affinity for CB2 agonist WIN55212-2 and inverse agonist SR144528 by 8-fold and 5-fold, respectively; the CB2 W5.43(194)F and W5.43(194)A mutations significantly affect the binding activities of CP55940, WIN55212-2 and SR144528. Furthermore, we found that agonist-mediated inhibition of the forskolin-induced cAMP production was dramatically diminished in the CB2 mutant W5.43(194)Y, whereas W5.43(194)F and W5.43(194)A mutants resulted in complete elimination of downstream signaling, suggesting that W5.43(194) was essential for the full activation of CB2. These results indicate that both aromatic interaction and hydrogen bonding are involved in ligand binding for the residue W5.43(194), and the mutations of this tryptophan site may affect the conformation of the ligand binding pocket and therefore control the active conformation of the wild type CB2 receptor. W5.43(194)Y/F/A mutations also displayed noticeable enhancement of the constitutive activation probably attributed to the receptor conformational changes resulted from the mutations.
Resumo:
The early detection of subjects with probable Alzheimer's disease (AD) is crucial for effective appliance of treatment strategies. Here we explored the ability of a multitude of linear and non-linear classification algorithms to discriminate between the electroencephalograms (EEGs) of patients with varying degree of AD and their age-matched control subjects. Absolute and relative spectral power, distribution of spectral power, and measures of spatial synchronization were calculated from recordings of resting eyes-closed continuous EEGs of 45 healthy controls, 116 patients with mild AD and 81 patients with moderate AD, recruited in two different centers (Stockholm, New York). The applied classification algorithms were: principal component linear discriminant analysis (PC LDA), partial least squares LDA (PLS LDA), principal component logistic regression (PC LR), partial least squares logistic regression (PLS LR), bagging, random forest, support vector machines (SVM) and feed-forward neural network. Based on 10-fold cross-validation runs it could be demonstrated that even tough modern computer-intensive classification algorithms such as random forests, SVM and neural networks show a slight superiority, more classical classification algorithms performed nearly equally well. Using random forests classification a considerable sensitivity of up to 85% and a specificity of 78%, respectively for the test of even only mild AD patients has been reached, whereas for the comparison of moderate AD vs. controls, using SVM and neural networks, values of 89% and 88% for sensitivity and specificity were achieved. Such a remarkable performance proves the value of these classification algorithms for clinical diagnostics.
Resumo:
One of the most consistent findings in the neuroscience of autism is hypoactivation of the fusiform gyrus (FG) during face processing. In this study the authors examined whether successful facial affect recognition training is associated with an increased activation of the FG in autism. The effect of a computer-based program to teach facial affect identification was examined in 10 individuals with high-functioning autism. Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) changes in the FG and other regions of interest, as well as behavioral facial affect recognition measures, were assessed pre- and posttraining. No significant activation changes in the FG were observed. Trained participants showed behavioral improvements, which were accompanied by higher BOLD fMRI signals in the superior parietal lobule and maintained activation in the right medial occipital gyrus.
Resumo:
Background: Emotional processing in essential hypertension beyond self-report questionnaire has hardly been investigated. The aim of this study is to examine associations between hypertension status and recognition of facial affect. Methods: 25 healthy, non-smoking, medication-free men including 13 hypertensive subjects aged between 20 and 65 years completed a computer-based task in order to examine sensitivity of recognition of facial affect. Neutral faces gradually changed to a specific emotion in a pseudo-continuous manner. Slides of the six basic emotions (fear, sadness, disgust, happiness, anger, surprise) were chosen from the „NimStim Set“. Pictures of three female and three male faces were electronically morphed in 1% steps of intensity from 0% to 100% (36 sets of faces with 100 pictures each). Each picture of a set was presented for one second, ranging from 0% to 100% of intensity. Participants were instructed to press a stop button as soon as they recognized the expression of the face. After stopping a forced choice between the six basic emotions was required. As dependent variables, we recorded the emotion intensity at which the presentation was stopped and the number of errors (error rate). Recognition sensitivity was calculated as emotion intensity of correctly identified emotions. Results: Mean arterial pressure was associated with a significantly increased recognition sensitivity of facial affect for the emotion anger (ß = - .43, p = 0.03*, Δ R2= .110). There was no association with the emotions fear, sadness, disgust, happiness, and surprise (p’s > .0.41). Mean arterial pressure did not relate to the mean number of errors for any of the facial emotions. Conclusions: Our findings suggest that an increased blood pressure is associated with increased recognition sensitivity of facial affect for the emotion anger, if a face shows anger. Hypertensives perceive facial anger expression faster than normotensives, if anger is shown.
Resumo:
Actualmente la detección del rostro humano es un tema difícil debido a varios parámetros implicados. Llega a ser de interés cada vez mayor en diversos campos de aplicaciones como en la identificación personal, la interface hombre-máquina, etc. La mayoría de las imágenes del rostro contienen un fondo que se debe eliminar/discriminar para poder así detectar el rostro humano. Así, este proyecto trata el diseño y la implementación de un sistema de detección facial humana, como el primer paso en el proceso, dejando abierto el camino, para en un posible futuro, ampliar este proyecto al siguiente paso, que sería, el Reconocimiento Facial, tema que no trataremos aquí. En la literatura científica, uno de los trabajos más importantes de detección de rostros en tiempo real es el algoritmo de Viola and Jones, que ha sido tras su uso y con las librerías de Open CV, el algoritmo elegido para el desarrollo de este proyecto. A continuación explicaré un breve resumen sobre el funcionamiento de mi aplicación. Mi aplicación puede capturar video en tiempo real y reconocer el rostro que la Webcam captura frente al resto de objetos que se pueden visualizar a través de ella. Para saber que el rostro es detectado, éste es recuadrado en su totalidad y seguido si este mueve. A su vez, si el usuario lo desea, puede guardar la imagen que la cámara esté mostrando, pudiéndola almacenar en cualquier directorio del PC. Además, incluí la opción de poder detectar el rostro humano sobre una imagen fija, cualquiera que tengamos guardada en nuestro PC, siendo mostradas el número de caras detectadas y pudiendo visualizarlas sucesivamente cuantas veces queramos. Para todo ello como bien he mencionado antes, el algoritmo usado para la detección facial es el de Viola and Jones. Este algoritmo se basa en el escaneo de toda la superficie de la imagen en busca del rostro humano, para ello, primero la imagen se transforma a escala de grises y luego se analiza dicha imagen, mostrando como resultado el rostro encuadrado. ABSTRACT Currently the detection of human face is a difficult issue due to various parameters involved. Becomes of increasing interest in various fields of applications such as personal identification, the man-machine interface, etc. Most of the face images contain a fund to be removed / discriminate in order to detect the human face. Thus, this project is the design and implementation of a human face detection system, as the first step in the process, leaving the way open for a possible future, extend this project to the next step would be, Facial Recognition , a topic not covered here. In the literature, one of the most important face detection in real time is the algorithm of Viola and Jones, who has been after use with Open CV libraries, the algorithm chosen for the development of this project. I will explain a brief summary of the performance of my application. My application can capture video in real time and recognize the face that the Webcam Capture compared to other objects that can be viewed through it. To know that the face is detected, it is fully boxed and followed if this move. In turn, if the user may want to save the image that the camera is showing, could store in any directory on your PC. I also included the option to detect the human face on a still image, whatever we have stored in your PC, being shown the number of faces detected and can view them on more times. For all as well I mentioned before, the algorithm used for face detection is that of Viola and Jones. This algorithm is based on scanning the entire surface of the image for the human face, for this, first the image is converted to gray-scale and then analyzed the image, showing results in the face framed.
Resumo:
A novel methodology for damage detection and location in structures is proposed. The methodology is based on strain measurements and consists in the development of strain field pattern recognition techniques. The aforementioned are based on PCA (principal component analysis) and damage indices (T 2 and Q). We propose the use of fiber Bragg gratings (FBGs) as strain sensors
Resumo:
A new technology is being proposed as a solution to the problem of unintentional facial detection and recognition in pictures in which the individuals appearing want to express their privacy preferences, through the use of different tags. The existing methods for face de-identification were mostly ad hoc solutions that only provided an absolute binary solution in a privacy context such as pixelation, or a bar mask. As the number and users of social networks are increasing, our preferences regarding our privacy may become more complex, leaving these absolute binary solutions as something obsolete. The proposed technology overcomes this problem by embedding information in a tag which will be placed close to the face without being disruptive. Through a decoding method the tag will provide the preferences that will be applied to the images in further stages.
Resumo:
A methodology has been developed for the study of molecular recognition at the level of single events and for the localization of sites on biosurfaces, in combining force microscopy with molecular recognition by specific ligands. For this goal, a sensor was designed by covalently linking an antibody (anti-human serum albumin, polyclonal) via a flexible spacer to the tip of a force microscope. This sensor permitted detection of single antibody-antigen recognition events by force signals of unique shape with an unbinding force of 244 +/- 22 pN. Analysis revealed that observed unbinding forces originate from the dissociation of individual Fab fragments from a human serum albumin molecule. The two Fab fragments of the antibody were found to bind independently and with equal probability. The flexible linkage provided the antibody with a 6-nm dynamical reach for binding, rendering binding probability high, 0.5 for encounter times of 60 ms. This permitted fast and reliable detection of antigenic sites during lateral scans with a positional accuracy of 1.5 nm. It is indicated that this methodology has promise for characterizing rate constants and kinetics of molecular recognition complexes and for molecular mapping of biosurfaces such as membranes.
Resumo:
As the telecommunications industry evolves over the next decade to provide the products and services that people will desire, several key technologies will become commonplace. Two of these, automatic speech recognition and text-to-speech synthesis, will provide users with more freedom on when, where, and how they access information. While these technologies are currently in their infancy, their capabilities are rapidly increasing and their deployment in today's telephone network is expanding. The economic impact of just one application, the automation of operator services, is well over $100 million per year. Yet there still are many technical challenges that must be resolved before these technologies can be deployed ubiquitously in products and services throughout the worldwide telephone network. These challenges include: (i) High level of accuracy. The technology must be perceived by the user as highly accurate, robust, and reliable. (ii) Easy to use. Speech is only one of several possible input/output modalities for conveying information between a human and a machine, much like a computer terminal or Touch-Tone pad on a telephone. It is not the final product. Therefore, speech technologies must be hidden from the user. That is, the burden of using the technology must be on the technology itself. (iii) Quick prototyping and development of new products and services. The technology must support the creation of new products and services based on speech in an efficient and timely fashion. In this paper I present a vision of the voice-processing industry with a focus on the areas with the broadest base of user penetration: speech recognition, text-to-speech synthesis, natural language processing, and speaker recognition technologies. The current and future applications of these technologies in the telecommunications industry will be examined in terms of their strengths, limitations, and the degree to which user needs have been or have yet to be met. Although noteworthy gains have been made in areas with potentially small user bases and in the more mature speech-coding technologies, these subjects are outside the scope of this paper.
Resumo:
This paper tells about the recognition of temporal expressions and the resolution of their temporal reference. A proposal of the units we have used to face up this tasks over a restricted domain is shown. We work with newspapers' articles in Spanish, that is why every reference we use is in Spanish. For the identification and recognition of temporal expressions we base on a temporal expression grammar and for the resolution on a dictionary, where we have the information necessary to do the date operation based on the recognized expressions. In the evaluation of our proposal we have obtained successful results for the examples studied.