979 resultados para computer assisted emission tomography
Resumo:
PURPOSE: Patients with magnetic resonance (MR)-negative focal epilepsy (MRN-E) have less favorable surgical outcomes (between 40% and 70%) compared to those in whom an MRI lesion guides the site of surgical intervention (60-90%). Patients with extratemporal MRN-E have the worst outcome (around 50% chance of seizure freedom). We studied whether electroencephalography (EEG) source imaging (ESI) of interictal epileptic activity can contribute to the identification of the epileptic focus in patients with normal MRI. METHODS: We carried out ESI in 10 operated patients with nonlesional MRI and a postsurgical follow-up of at least 1 year. Five of the 10 patients had extratemporal lobe epilepsy. Evaluation comprised surface and intracranial EEG monitoring of ictal and interictal events, structural MRI, [(18)F]fluorodeoxyglucose positron emission tomography (FDG-PET), ictal and interictal perfusion single photon emission computed tomography (SPECT) scans. Eight of the 10 patients also underwent intracranial monitoring. RESULTS: ESI correctly localized the epileptic focus within the resection margins in 8 of 10 patients, 9 of whom experienced favorable postsurgical outcomes. DISCUSSION: The results highlight the diagnostic value of ESI and encourage broadening its application to patients with MRN-E. If the surface EEG contains fairly localized spikes, ESI contributes to the presurgical decision process.
Resumo:
The implementation of new techniques of imaging in the daily practice of the radiation oncologist is a major advance in these last 10 years. This allows optimizing the therapeutic intervals and locoregional control of the disease while limiting side effects. Among them, positron emission tomography (PET) offers an opportunity to the clinician to obtain data relative to the tumoral biological mechanisms, while benefiting from the morphological images of the computed tomography (CT) scan. Recently hybrid PET/CT has been developed and numerous studies aimed at optimizing its use in the planning, the evaluation of the treatment response and the prognostic value. The choice of the radiotracer (according to the type of cancer and to the studied biological mechanism) and the various methods of tumoral delineation, require a regular update to optimize the practices. We propose throughout this article, an exhaustive review of the published researches (and in process of publication) until December 2011, as user guide of PET/CT in all the aspects of the modern radiotherapy (from the diagnosis to the follow-up): biopsy guiding, optimization of treatment planning and dosimetry, evaluation of tumor response and prognostic value, follow-up and early detection of recurrence versus tumoral necrosis. In a didactic purpose, each of these aspects is approached by primary tumoral location, and illustrated with representative iconographic examples. The current contribution of PET/CT and its perspectives of development are described to offer to the radiation oncologist a clear and up to date reading in this expanding domain.
Resumo:
OBJECTIVE: To identify biological evidence for Alzheimer disease (AD) in individuals with subjective memory impairment (SMI) and unimpaired cognitive performance and to investigate the longitudinal cognitive course in these subjects. METHOD: [¹⁸F]fluoro-2-deoxyglucose PET (FDG-PET) and structural MRI were acquired in 31 subjects with SMI and 56 controls. Cognitive follow-up testing was performed (average follow-up time: 35 months). Differences in baseline brain imaging data and in memory decline were assessed between both groups. Associations of memory decline with brain imaging data were tested. RESULTS: The SMI group showed hypometabolism in the right precuneus and hypermetabolism in the right medial temporal lobe. Gray matter volume was reduced in the right hippocampus in the SMI group. At follow-up, subjects with SMI showed a poorer performance than controls on measures of episodic memory. Longitudinal memory decline in the SMI group was associated with reduced glucose metabolism in the right precuneus at baseline. CONCLUSION: The cross-sectional difference in 2 independent neuroimaging modalities indicates early AD pathology in SMI. The poorer memory performance at follow-up and the association of reduced longitudinal memory performance with hypometabolism in the precuneus at baseline support the concept of SMI as the earliest manifestation of AD.
Resumo:
In this article we propose a novel method for calculating cardiac 3-D strain. The method requires the acquisition of myocardial short-axis (SA) slices only and produces the 3-D strain tensor at every point within every pair of slices. Three-dimensional displacement is calculated from SA slices using zHARP which is then used for calculating the local displacement gradient and thus the local strain tensor. There are three main advantages of this method. First, the 3-D strain tensor is calculated for every pixel without interpolation; this is unprecedented in cardiac MR imaging. Second, this method is fast, in part because there is no need to acquire long-axis (LA) slices. Third, the method is accurate because the 3-D displacement components are acquired simultaneously and therefore reduces motion artifacts without the need for registration. This article presents the theory of computing 3-D strain from two slices using zHARP, the imaging protocol, and both phantom and in-vivo validation.
Resumo:
The 2010 Position Development Conference addressed four questions related to the impact of previous fractures on 10-year fracture risk as calculated by FRAX(®). To address these questions, PubMed was searched on the keywords "fracture, epidemiology, osteoporosis." Titles of retrieved articles were reviewed for an indication that risk for future fracture was discussed. Abstracts of these articles were reviewed for an indication that one or more of the questions listed above was discussed. For those that did, the articles were reviewed in greater detail to extract the findings and to find additional past work and citing works that also bore on the questions. The official positions and the supporting literature review are presented here. FRAX(®) underestimates fracture probability in persons with a history of multiple fractures (good, A, W). FRAX(®) may underestimate fracture probability in individuals with prevalent severe vertebral fractures (good, A, W). While there is evidence that hip, vertebral, and humeral fractures appear to confer greater risk of subsequent fracture than fractures at other sites, quantification of this incremental risk in FRAX(®) is not possible (fair, B, W). FRAX(®) may underestimate fracture probability in individuals with a parental history of non-hip fragility fracture (fair, B, W). Limitations of the methodology include performance by a single reviewer, preliminary review of the literature being confined to titles, and secondary review being limited to abstracts. Limitations of the evidence base include publication bias, overrepresentation of persons of European descent in the published studies, and technical differences in the methods used to identify prevalent and incident fractures. Emerging topics for future research include fracture epidemiology in non-European populations and men, the impact of fractures in family members other than parents, and the genetic contribution to fracture risk.
Resumo:
Following 15 years of experimental studies, tumor immunotargeting using monoclonal antibodies directed against tumor associated antigens shows now important monoclonal antibodies directed against tumor associated antigens shows now important clinical developments. This is mainly due to encouraging therapeutic results which have obtained using humanized antibodies such as the anti-CD20 rituximab in follicular B lymphomas and the anti-DrbB2 herceptin in breast carcinomas. Thanks to genetic engineering it is possible to graft variable or hypervariable regions from murine antibodies to human IgG, and even to obtain fully human antibodies by using either transgenic mice containing a large part of the human repertoire of human IgG, or selection of human antibody fragments expressed by phages. Radiolabeling of antibodies played a major role to demonstrate the tumor immunotargeting specificity and remains attractive for the diagnosis by immunoscintigraphy as well as for the treatment by radioimmunotherapy of some cancers. In this review, the current results and the prospects of diagnostic and therapeutic uses of anti-tumor antibodies and their fragments will be described. Concerning diagnosis, 123-iodine or 99m-technetium labeled Fab fragments allowed very demonstrative tumor images but this technique has a limited effect upon the therapeutic attitude. Immuno-PET (positron emission tomography) could enhance the sensitivity of this imaging method. Radio-immunoguided surgery and immunophotodetection are attractive techniques still under evaluation. Concerning therapy, 131-iodine labeled anti-CD20 antibodies gave spectacular results in non-Hodgkin's B lymphomas. In solid tumors which as less radiosensitive, radioimmunotherapy could concern small tumors and need the use of two-steps targeting and/or alpha emitters radioisotopes. Some other strategies will be described such as bispecific antibodies directed against tumors and immune effector cells, some antibody fragments expressed on T cells called T-bodies or some biological studies using intrabodies. Published data and works in progress demonstrate that immunotargeting of tumors will have a growing place in the treatments of cancer patients.
Resumo:
The nuclear matrix, a proteinaceous network believed to be a scaffolding structure determining higher-order organization of chromatin, is usually prepared from intact nuclei by a series of extraction steps. In most cell types investigated the nuclear matrix does not spontaneously resist these treatments but must be stabilized before the application of extracting agents. Incubation of isolated nuclei at 37C or 42C in buffers containing Mg++ has been widely employed as stabilizing agent. We have previously demonstrated that heat treatment induces changes in the distribution of three nuclear scaffold proteins in nuclei prepared in the absence of Mg++ ions. We studied whether different concentrations of Mg++ (2.0-5 mM) affect the spatial distribution of nuclear matrix proteins in nuclei isolated from K562 erythroleukemia cells and stabilized by heat at either 37C or 42C. Five proteins were studied, two of which were RNA metabolism-related proteins (a 105-kD component of splicing complexes and an RNP component), one a 126-kD constituent of a class of nuclear bodies, and two were components of the inner matrix network. The localization of proteins was determined by immunofluorescent staining and confocal scanning laser microscope. Mg++ induced significant changes of antigen distribution even at the lowest concentration employed, and these modifications were enhanced in parallel with increase in the concentration of the divalent cation. The different sensitivity to heat stabilization and Mg++ of these nuclear proteins might reflect a different degree of association with the nuclear scaffold and can be closely related to their functional or structural role.
Resumo:
Tools to predict fracture risk are useful for selecting patients for pharmacological therapy in order to reduce fracture risk and redirect limited healthcare resources to those who are most likely to benefit. FRAX® is a World Health Organization fracture risk assessment algorithm for estimating the 10-year probability of hip fracture and major osteoporotic fracture. Effective application of FRAX® in clinical practice requires a thorough understanding of its limitations as well as its utility. For some patients, FRAX® may underestimate or overestimate fracture risk. In order to address some of the common issues encountered with the use of FRAX® for individual patients, the International Society for Clinical Densitometry (ISCD) and International Osteoporosis Foundation (IOF) assigned task forces to review the medical evidence and make recommendations for optimal use of FRAX® in clinical practice. Among the issues addressed were the use of bone mineral density (BMD) measurements at skeletal sites other than the femoral neck, the use of technologies other than dual-energy X-ray absorptiometry, the use of FRAX® without BMD input, the use of FRAX® to monitor treatment, and the addition of the rate of bone loss as a clinical risk factor for FRAX®. The evidence and recommendations were presented to a panel of experts at the Joint ISCD-IOF FRAX® Position Development Conference, resulting in the development of Joint ISCD-IOF Official Positions addressing FRAX®-related issues.
Resumo:
In order to compare coronary magnetic resonance angiography (MRA) data obtained with different scanning methodologies, adequate visualization and presentation of the coronary MRA data need to be ensured. Furthermore, an objective quantitative comparison between images acquired with different scanning methods is desirable. To address this need, a software tool ("Soap-Bubble") that facilitates visualization and quantitative comparison of 3D volume targeted coronary MRA data was developed. In the present implementation, the user interactively specifies a curved subvolume (enclosed in the 3D coronary MRA data set) that closely encompasses the coronary arterial segments. With a 3D Delaunay triangulation and a parallel projection, this enables the simultaneous display of multiple coronary segments in one 2D representation. For objective quantitative analysis, frequently explored quantitative parameters such as signal-to-noise ratio (SNR); contrast-to-noise ratio (CNR); and vessel length, sharpness, and diameter can be assessed. The present tool supports visualization and objective, quantitative comparisons of coronary MRA data obtained with different scanning methods. The first results obtained in healthy adults and in patients with coronary artery disease are presented.
Resumo:
Left rostral dorsal premotor cortex (rPMd) and supramarginal gyrus (SMG) have been implicated in the dynamic control of actions. In 12 right-handed healthy individuals, we applied 30 min of low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) over left rPMd to investigate the involvement of left rPMd and SMG in the rapid adjustment of actions guided by visuospatial cues. After rTMS, subjects underwent functional magnetic resonance imaging while making spatially congruent button presses with the right or left index finger in response to a left- or right-sided target. Subjects were asked to covertly prepare motor responses as indicated by a directional cue presented 1 s before the target. On 20% of trials, the cue was invalid, requiring subjects to readjust their motor plan according to the target location. Compared with sham rTMS, real rTMS increased the number of correct responses in invalidly cued trials. After real rTMS, task-related activity of the stimulated left rPMd showed increased task-related coupling with activity in ipsilateral SMG and the adjacent anterior intraparietal area (AIP). Individuals who showed a stronger increase in left-hemispheric premotor-parietal connectivity also made fewer errors on invalidly cued trials after rTMS. The results suggest that rTMS over left rPMd improved the ability to dynamically adjust visuospatial response mapping by strengthening left-hemispheric connectivity between rPMd and the SMG-AIP region. These results support the notion that left rPMd and SMG-AIP contribute toward dynamic control of actions and demonstrate that low-frequency rTMS can enhance functional coupling between task-relevant brain regions and improve some aspects of motor performance.
Resumo:
AIM: To describe a large family with autosomal dominant parkinsonism. BACKGROUND: Seven genes are directly implicated in autosomally inherited parkinsonism. However, there are several multigenerational large families known with no identifiable mutation. MATERIAL AND METHODS: Family members were evaluated clinically, by history and chart review. Genetic investigation included SCA2, SCA3, UCHL1, SNCA, LRRK2, PINK1, PRKN, PGRN, FMR1 premutation, and MAPT. The proband underwent brain fluorodopa PET (FD-PET) scan, and one autopsy was available. RESULTS: Eleven patients had a diagnosis of Parkinson's disease (PD), nine women. Mean age of onset was 52 with tremor-predominant dopa-responsive parkinsonism. Disease progression was slow but severe motor fluctuations occurred. One patient required subthalamic nucleus deep-brain stimulation with a good motor outcome. One patient had mental retardation, schizophrenia and became demented, and another patient was demented. Three patients and also two unaffected subjects had mild learning difficulties. All genetic tests yielded negative results. FD-PET showed marked asymmetric striatal tracer uptake deficiency, consistent with PD. Pathological examination demonstrated no Lewy bodies and immunostaining was negative for alpha-synuclein. CONCLUSION: Apart from a younger age of onset and a female predominance, the phenotype was indistinguishable from sporadic tremor-predominant PD, including FD-PET scan results. As known genetic causes of autosomal dominant PD were excluded, this family harbors a novel genetic defect.
Resumo:
Since January 2008-de facto 2012-medical physics experts (MPEs) are, by law, to be involved in the optimisation process of radiological diagnostic procedures in Switzerland. Computed tomography, fluoroscopy and nuclear medicine imaging units have been assessed for patient exposure and image quality. Large spreads in clinical practice have been observed. For example, the number of scans per abdominal CT examination went from 1 to 9. Fluoroscopy units showed, for the same device settings, dose rate variations up to a factor of 3 to 7. Quantitative image quality for positron emission tomography (PET)/CT examinations varied significantly depending on the local image reconstruction algorithms. Future work will be focused on promoting team cooperation between MPEs, radiologists and radiographers and on implementing task-oriented objective image quality indicators.
Resumo:
IMPORTANCE: Cerebral amyloid-β aggregation is an early pathological event in Alzheimer disease (AD), starting decades before dementia onset. Estimates of the prevalence of amyloid pathology in persons without dementia are needed to understand the development of AD and to design prevention studies. OBJECTIVE: To use individual participant data meta-analysis to estimate the prevalence of amyloid pathology as measured with biomarkers in participants with normal cognition, subjective cognitive impairment (SCI), or mild cognitive impairment (MCI). DATA SOURCES: Relevant biomarker studies identified by searching studies published before April 2015 using the MEDLINE and Web of Science databases and through personal communication with investigators. STUDY SELECTION: Studies were included if they provided individual participant data for participants without dementia and used an a priori defined cutoff for amyloid positivity. DATA EXTRACTION AND SYNTHESIS: Individual records were provided for 2914 participants with normal cognition, 697 with SCI, and 3972 with MCI aged 18 to 100 years from 55 studies. MAIN OUTCOMES AND MEASURES: Prevalence of amyloid pathology on positron emission tomography or in cerebrospinal fluid according to AD risk factors (age, apolipoprotein E [APOE] genotype, sex, and education) estimated by generalized estimating equations. RESULTS: The prevalence of amyloid pathology increased from age 50 to 90 years from 10% (95% CI, 8%-13%) to 44% (95% CI, 37%-51%) among participants with normal cognition; from 12% (95% CI, 8%-18%) to 43% (95% CI, 32%-55%) among patients with SCI; and from 27% (95% CI, 23%-32%) to 71% (95% CI, 66%-76%) among patients with MCI. APOE-ε4 carriers had 2 to 3 times higher prevalence estimates than noncarriers. The age at which 15% of the participants with normal cognition were amyloid positive was approximately 40 years for APOE ε4ε4 carriers, 50 years for ε2ε4 carriers, 55 years for ε3ε4 carriers, 65 years for ε3ε3 carriers, and 95 years for ε2ε3 carriers. Amyloid positivity was more common in highly educated participants but not associated with sex or biomarker modality. CONCLUSIONS AND RELEVANCE: Among persons without dementia, the prevalence of cerebral amyloid pathology as determined by positron emission tomography or cerebrospinal fluid findings was associated with age, APOE genotype, and presence of cognitive impairment. These findings suggest a 20- to 30-year interval between first development of amyloid positivity and onset of dementia.
Resumo:
BACKGROUND: Left atrial (LA) dilatation is associated with a large variety of cardiac diseases. Current cardiovascular magnetic resonance (CMR) strategies to measure LA volumes are based on multi-breath-hold multi-slice acquisitions, which are time-consuming and susceptible to misregistration. AIM: To develop a time-efficient single breath-hold 3D CMR acquisition and reconstruction method to precisely measure LA volumes and function. METHODS: A highly accelerated compressed-sensing multi-slice cine sequence (CS-cineCMR) was combined with a non-model-based 3D reconstruction method to measure LA volumes with high temporal and spatial resolution during a single breath-hold. This approach was validated in LA phantoms of different shapes and applied in 3 patients. In addition, the influence of slice orientations on accuracy was evaluated in the LA phantoms for the new approach in comparison with a conventional model-based biplane area-length reconstruction. As a reference in patients, a self-navigated high-resolution whole-heart 3D dataset (3D-HR-CMR) was acquired during mid-diastole to yield accurate LA volumes. RESULTS: Phantom studies. LA volumes were accurately measured by CS-cineCMR with a mean difference of -4.73 ± 1.75 ml (-8.67 ± 3.54%, r2 = 0.94). For the new method the calculated volumes were not significantly different when different orientations of the CS-cineCMR slices were applied to cover the LA phantoms. Long-axis "aligned" vs "not aligned" with the phantom long-axis yielded similar differences vs the reference volume (-4.87 ± 1.73 ml vs. -4.45 ± 1.97 ml, p = 0.67) and short-axis "perpendicular" vs. "not-perpendicular" with the LA long-axis (-4.72 ± 1.66 ml vs. -4.75 ± 2.13 ml; p = 0.98). The conventional bi-plane area-length method was susceptible for slice orientations (p = 0.0085 for the interaction of "slice orientation" and "reconstruction technique", 2-way ANOVA for repeated measures). To use the 3D-HR-CMR as the reference for LA volumes in patients, it was validated in the LA phantoms (mean difference: -1.37 ± 1.35 ml, -2.38 ± 2.44%, r2 = 0.97). Patient study: The CS-cineCMR LA volumes of the mid-diastolic frame matched closely with the reference LA volume (measured by 3D-HR-CMR) with a difference of -2.66 ± 6.5 ml (3.0% underestimation; true LA volumes: 63 ml, 62 ml, and 395 ml). Finally, a high intra- and inter-observer agreement for maximal and minimal LA volume measurement is also shown. CONCLUSIONS: The proposed method combines a highly accelerated single-breathhold compressed-sensing multi-slice CMR technique with a non-model-based 3D reconstruction to accurately and reproducibly measure LA volumes and function.