954 resultados para computer algorithm
Resumo:
Computer Experiments, consisting of a number of runs of a computer model with different inputs, are now common-place in scientific research. Using a simple fire model for illustration some guidelines are given for the size of a computer experiment. A graph is provided relating the error of prediction to the sample size which should be of use when designing computer experiments. Methods for augmenting computer experiments with extra runs are also described and illustrated. The simplest method involves adding one point at a time choosing that point with the maximum prediction variance. Another method that appears to work well is to choose points from a candidate set with maximum determinant of the variance covariance matrix of predictions.
Resumo:
Deterministic computer simulations of physical experiments are now common techniques in science and engineering. Often, physical experiments are too time consuming, expensive or impossible to conduct. Complex computer models or codes, rather than physical experiments lead to the study of computer experiments, which are used to investigate many scientific phenomena of this nature. A computer experiment consists of a number of runs of the computer code with different input choices. The Design and Analysis of Computer Experiments is a rapidly growing technique in statistical experimental design. This thesis investigates some practical issues in the design and analysis of computer experiments and attempts to answer some of the questions faced by experimenters using computer experiments. In particular, the question of the number of computer experiments and how they should be augmented is studied and attention is given to when the response is a function over time.
Resumo:
Considerate amount of research has proposed optimization-based approaches employing various vibration parameters for structural damage diagnosis. The damage detection by these methods is in fact a result of updating the analytical structural model in line with the current physical model. The feasibility of these approaches has been proven. But most of the verification has been done on simple structures, such as beams or plates. In the application on a complex structure, like steel truss bridges, a traditional optimization process will cost massive computational resources and lengthy convergence. This study presents a multi-layer genetic algorithm (ML-GA) to overcome the problem. Unlike the tedious convergence process in a conventional damage optimization process, in each layer, the proposed algorithm divides the GA’s population into groups with a less number of damage candidates; then, the converged population in each group evolves as an initial population of the next layer, where the groups merge to larger groups. In a damage detection process featuring ML-GA, as parallel computation can be implemented, the optimization performance and computational efficiency can be enhanced. In order to assess the proposed algorithm, the modal strain energy correlation (MSEC) has been considered as the objective function. Several damage scenarios of a complex steel truss bridge’s finite element model have been employed to evaluate the effectiveness and performance of ML-GA, against a conventional GA. In both single- and multiple damage scenarios, the analytical and experimental study shows that the MSEC index has achieved excellent damage indication and efficiency using the proposed ML-GA, whereas the conventional GA only converges at a local solution.
Resumo:
Stereo-based visual odometry algorithms are heavily dependent on an accurate calibration of the rigidly fixed stereo pair. Even small shifts in the rigid transform between the cameras can impact on feature matching and 3D scene triangulation, adversely affecting pose estimates and applications dependent on long-term autonomy. In many field-based scenarios where vibration, knocks and pressure change affect a robotic vehicle, maintaining an accurate stereo calibration cannot be guaranteed over long periods. This paper presents a novel method of recalibrating overlapping stereo camera rigs from online visual data while simultaneously providing an up-to-date and up-to-scale pose estimate. The proposed technique implements a novel form of partitioned bundle adjustment that explicitly includes the homogeneous transform between a stereo camera pair to generate an optimal calibration. Pose estimates are computed in parallel to the calibration, providing online recalibration which seamlessly integrates into a stereo visual odometry framework. We present results demonstrating accurate performance of the algorithm on both simulated scenarios and real data gathered from a wide-baseline stereo pair on a ground vehicle traversing urban roads.
Resumo:
The most powerful known primitive in public-key cryptography is undoubtedly elliptic curve pairings. Upon their introduction just over ten years ago the computation of pairings was far too slow for them to be considered a practical option. This resulted in a vast amount of research from many mathematicians and computer scientists around the globe aiming to improve this computation speed. From the use of modern results in algebraic and arithmetic geometry to the application of foundational number theory that dates back to the days of Gauss and Euler, cryptographic pairings have since experienced a great deal of improvement. As a result, what was an extremely expensive computation that took several minutes is now a high-speed operation that takes less than a millisecond. This thesis presents a range of optimisations to the state-of-the-art in cryptographic pairing computation. Both through extending prior techniques, and introducing several novel ideas of our own, our work has contributed to recordbreaking pairing implementations.
Resumo:
Electricity cost has become a major expense for running data centers and server consolidation using virtualization technology has been used as an important technology to improve the energy efficiency of data centers. In this research, a genetic algorithm and a simulation-annealing algorithm are proposed for the static virtual machine placement problem that considers the energy consumption in both the servers and the communication network, and a trading algorithm is proposed for dynamic virtual machine placement. Experimental results have shown that the proposed methods are more energy efficient than existing solutions.
Resumo:
Molecular-level computer simulations of restricted water diffusion can be used to develop models for relating diffusion tensor imaging measurements of anisotropic tissue to microstructural tissue characteristics. The diffusion tensors resulting from these simulations can then be analyzed in terms of their relationship to the structural anisotropy of the model used. As the translational motion of water molecules is essentially random, their dynamics can be effectively simulated using computers. In addition to modeling water dynamics and water-tissue interactions, the simulation software of the present study was developed to automatically generate collagen fiber networks from user-defined parameters. This flexibility provides the opportunity for further investigations of the relationship between the diffusion tensor of water and morphologically different models representing different anisotropic tissues.
Resumo:
This paper presents two algorithms to automate the detection of marine species in aerial imagery. An algorithm from an initial pilot study is presented in which morphology operations and colour analysis formed the basis of its working principle. A second approach is presented in which saturation channel and histogram-based shape profiling were used. We report on performance for both algorithms using datasets collected from an unmanned aerial system at an altitude of 1000 ft. Early results have demonstrated recall values of 48.57% and 51.4%, and precision values of 4.01% and 4.97%.
Resumo:
Monitoring and estimation of marine populations is of paramount importance for the conservation and management of sea species. Regular surveys are used to this purpose followed often by a manual counting process. This paper proposes an algorithm for automatic detection of dugongs from imagery taken in aerial surveys. Our algorithm exploits the fact that dugongs are rare in most images, therefore we determine regions of interest partially based on color rarity. This simple observation makes the system robust to changes in illumination. We also show that by applying the extended-maxima transform on red-ratio images, submerged dugongs with very fuzzy edges can be detected. Performance figures obtained here are promising in terms of degree of confidence in the detection of marine species, but more importantly our approach represents a significant step in automating this type of surveys.
Resumo:
In this paper we use the algorithm SeqSLAM to address the question, how little and what quality of visual information is needed to localize along a familiar route? We conduct a comprehensive investigation of place recognition performance on seven datasets while varying image resolution (primarily 1 to 512 pixel images), pixel bit depth, field of view, motion blur, image compression and matching sequence length. Results confirm that place recognition using single images or short image sequences is poor, but improves to match or exceed current benchmarks as the matching sequence length increases. We then present place recognition results from two experiments where low-quality imagery is directly caused by sensor limitations; in one, place recognition is achieved along an unlit mountain road by using noisy, long-exposure blurred images, and in the other, two single pixel light sensors are used to localize in an indoor environment. We also show failure modes caused by pose variance and sequence aliasing, and discuss ways in which they may be overcome. By showing how place recognition along a route is feasible even with severely degraded image sequences, we hope to provoke a re-examination of how we develop and test future localization and mapping systems.
Resumo:
Often voltage rise along low voltage (LV) networks limits their capacity to accommodate more renewable energy (RE) sources. This paper proposes a robust and effective approach to coordinate customers' resources and control voltage rise in LV networks, where photovoltaics (PVs) are considered as the RE sources. The proposed coordination algorithm includes both localized and distributed control strategies. The localized strategy determines the value of PV inverter active and reactive power, while the distributed strategy coordinates customers' energy storage units (ESUs). To verify the effectiveness of proposed approach, a typical residential LV network is used and simulated in the PSCAD-EMTC platform.
Resumo:
Achieving a robust, accurately scaled pose estimate in long-range stereo presents significant challenges. For large scene depths, triangulation from a single stereo pair is inadequate and noisy. Additionally, vibration and flexible rigs in airborne applications mean accurate calibrations are often compromised. This paper presents a technique for accurately initializing a long-range stereo VO algorithm at large scene depth, with accurate scale, without explicitly computing structure from rigidly fixed camera pairs. By performing a monocular pose estimate over a window of frames from a single camera, followed by adding the secondary camera frames in a modified bundle adjustment, an accurate, metrically scaled pose estimate can be found. To achieve this the scale of the stereo pair is included in the optimization as an additional parameter. Results are presented both on simulated and field gathered data from a fixed-wing UAV flying at significant altitude, where the epipolar geometry is inaccurate due to structural deformation and triangulation from a single pair is insufficient. Comparisons are made with more conventional VO techniques where the scale is not explicitly optimized, and demonstrated over repeated trials to indicate robustness.
Resumo:
This paper proposes a distributed control approach to coordinate multiple energy storage units (ESUs) to avoid violation of voltage and thermal constraints, which are some of the main power quality challenges for future distribution networks. ESUs usually are connected to a network through voltage source converters. In this paper, both ESU converters active and reactive power are used to deal with the above mentioned power quality issues. ESUs' reactive power is proposed to be used for voltage support, while the active power is to be utilized in managing network loading. Two typical distribution networks are used to apply the proposed method, and the simulated results are illustrated in this paper to show the effectiveness of this approach.
Resumo:
In the electricity market environment, coordination of system reliability and economics of a power system is of great significance in determining the available transfer capability (ATC). In addition, the risks associated with uncertainties should be properly addressed in the ATC determination process for risk-benefit maximization. Against this background, it is necessary that the ATC be optimally allocated and utilized within relative security constraints. First of all, the non-sequential Monte Carlo stimulation is employed to derive the probability density distribution of ATC of designated areas incorporating uncertainty factors. Second, on the basis of that, a multi-objective optimization model is formulated to determine the multi-area ATC so as to maximize the risk-benefits. Then, the solution to the developed model is achieved by the fast non-dominated sorting (NSGA-II) algorithm, which could decrease the risk caused by uncertainties while coordinating the ATCs of different areas. Finally, the IEEE 118-bus test system is served for demonstrating the essential features of the developed model and employed algorithm.
Resumo:
This paper discusses computer mediated distance learning on a Master's level course in the UK and student perceptions of this as a quality learning environment.