943 resultados para complex formation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expedient synthetic approaches to the highly functionalized polycyclic alkaloids communesin F and perophoramidine are described using a unified approach featuring a key decarboxylative allylic alkylation to access a crucial and highly congested 3,3-disubstituted oxindole. Described are two distinct, stereoselective alkylations that produce structures in divergent diastereomeric series possessing the critical vicinal all-carbon quaternary centers needed for each synthesis. Synthetic studies toward these challenging core structures have revealed a number of unanticipated modes of reactivity inherent to these complex alkaloid scaffolds. Finally, a previously unknown mild and efficient deprotection protocol for the o-nitrobenzyl group is disclosed – this serendipitous discovery permitted a concise endgame for the formal syntheses of both communesin F and perophoramidine.

In addition, the atroposelective synthesis of PINAP ligands has been accomplished via a palladium-catalyzed C–P coupling process through dynamic kinetic resolution. These catalytic conditions allow access to a wide variety of alkoxy- and benzyloxy-substituted PINAP ligands in high enantiomeric excess.

An efficient and exceptionally mild intramolecular nickel-catalyzed carbon–oxygen bond-forming reaction between vinyl halides and primary, secondary, and tertiary alcohols has been achieved. This operationally simple method allows direct access to cyclic vinyl ethers in high yields in a single step.

Finally, synthetic studies toward polycyclic ineleganolide are described. The entire fragmented carbon framework has been constructed from this work. Highly (Z)-selective olefination was achieved by the method by the Ando group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characterisation of strain path with respect to the directionality of defect formation is discussed. The criterion of non-monotonic strain path is used in the scalar and tensor models for damage accumulation and recovery. Comparable analysis of models and their verification has been obtained by simulation of crack initiation in a two-stage metal forming operation consisting of wire drawing followed by constrained upsetting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high strength low alloy steel composition has been melted and processed by two different routes: simulated direct strip casting and slow cooled ingot casting. The microstructures were examined with scanning and transmission electron microscopy, atom probe tomography and small angle neutron scattering (SANS). The formation of cementite (Fe3C), manganese sulphides (MnS) and niobium carbo-nitrides (Nb(C,N)) was investigated in both casting conditions. The sulphides were found to be significantly refined by the higher cooling rate, and developed an average diameter of only 100 nm for the fast cooled sample, and a diameter too large to be measured with SANS in the slow cooled condition (> 1.1 μm). Slow cooling resulted in the development of classical Nb(C,N) precipitation, with an average diameter of 7.2 nm. However, after rapid cooling both the SANS and atom probe tomography data indicated that the Nb was retained in the matrix as a random solid solution. There was also some evidence that O, N and S are also retained in solid solution in levels not found during conventional processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-replication and compartmentalization are two central properties thought to be essential for minimal life, and understanding how such processes interact in the emergence of complex reaction networks is crucial to exploring the development of complexity in chemistry and biology. Autocatalysis can emerge from multiple different mechanisms such as formation of an initiator, template self-replication and physical autocatalysis (where micelles formed from the reaction product solubilize the reactants, leading to higher local concentrations and therefore higher rates). Amphiphiles are also used in artificial life studies to create protocell models such as micelles, vesicles and oil-in-water droplets, and can increase reaction rates by encapsulation of reactants. So far, no template self-replicator exists which is capable of compartmentalization, or transferring this molecular scale phenomenon to micro or macro-scale assemblies. Here a system is demonstrated where an amphiphilic imine catalyses its own formation by joining a non-polar alkyl tail group with a polar carboxylic acid head group to form a template, which was shown to form reverse micelles by Dynamic Light Scattering (DLS). The kinetics of this system were investigated by 1H NMR spectroscopy, showing clearly that a template self-replication mechanism operates, though there was no evidence that the reverse micelles participated in physical autocatalysis. Active oil droplets, composed from a mixture of insoluble organic compounds in an aqueous sub-phase, can undergo processes such as division, self-propulsion and chemotaxis, and are studied as models for minimal cells, or protocells. Although in most cases the Marangoni effect is responsible for the forces on the droplet, the behaviour of the droplet depends heavily on the exact composition. Though theoretical models are able to calculate the forces on a droplet, to model a mixture of oils on an aqueous surface where compounds from the oil phase are dissolving and diffusing through the aqueous phase is beyond current computational capability. The behaviour of a droplet in an aqueous phase can only be discovered through experiment, though it is determined by the droplet's composition. By using an evolutionary algorithm and a liquid handling robot to conduct droplet experiments and decide which compositions to test next, entirely autonomously, the composition of the droplet becomes a chemical genome capable of evolution. The selection is carried out according to a fitness function, which ranks the formulation based on how well it conforms to the chosen fitness criteria (e.g. movement or division). Over successive generations, significant increases in fitness are achieved, and this increase is higher with more components (i.e. greater complexity). Other chemical processes such as chemiluminescence and gelation were investigated in active oil droplets, demonstrating the possibility of controlling chemical reactions by selective droplet fusion. Potential future applications for this might include combinatorial chemistry, or additional fitness goals for the genetic algorithm. Combining the self-replication and the droplet protocells research, it was demonstrated that the presence of the amphiphilic replicator lowers the interfacial tension between droplets of a reaction mixture in organic solution and the alkaline aqueous phase, causing them to divide. Periodic sampling by a liquid handling robot revealed that the extent of droplet fission increased as the reaction progressed, producing more individual protocells with increased self-replication. This demonstrates coupling of the molecular scale phenomenon of template self-replication to a macroscale physicochemical effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Görgeyite, K2Ca5(SO4)6··H2O, is a very rare monoclinic double salt found in evaporites related to the slightly more common mineral syngenite. At 1 atmosphere with increasing external temperature from 25 to 150 °C, the following succession of minerals was formed: first gypsum and K2O, followed at 100 °C by görgeyite. Changes in concentration at 150 °C due to evaporation resulted in the formation of syngenite and finally arcanite. Under hydrothermal conditions, the succession is syngenite at 50 °C, followed by görgyeite at 100 and 150 °C. Increasing the synthesis time at 100 °C and 1 atmosphere showed that initially gypsum was formed, later being replaced by görgeyite. Finally görgeyite was replaced by syngenite, indicating that görgeyite is a metastable phase under these conditions. Under hydrothermal conditions, syngenite plus a small amount of gypsum was formed, after two days being replaced by görgeyite. No further changes were observed with increasing time. Pure görgeyite showed elongated crystals approximately 500 to 1000 µ m in length. The infrared and Raman spectra are mainly showing the vibrational modes of the sulfate groups and the crystal water (structural water). Water is characterized by OH-stretching modes at 3526 and 3577 cm–1 , OH-bending modes at 1615 and 1647 cm–1 , and an OH-libration mode at 876 cm–1 . The sulfate 1 mode is weak in the infrared but showed strong bands at 1005 and 1013 cm–1 in the Raman spectrum. The 2 mode also showed strong bands in the Raman spectrum at 433, 440, 457, and 480 cm–1 . The 3 mode is characterized by a complex set of bands in both infrared and Raman spectra around 1150 cm–1 , whereas 4 is found at 650 cm–1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal behaviour of halloysite fully expanded with hydrazine-hydrate has been investigated in nitrogen atmosphere under dynamic heating and at a constant, pre-set decomposition rate of 0.15 mg min-1. Under controlled-rate thermal analysis (CRTA) conditions it was possible to resolve the closely overlapping decomposition stages and to distinguish between adsorbed and bonded reagent. Three types of bonded reagent could be identified. The loosely bonded reagent amounting to 0.20 mol hydrazine-hydrate per mol inner surface hydroxyl is connected to the internal and external surfaces of the expanded mineral and is present as a space filler between the sheets of the delaminated mineral. The strongly bonded (intercalated) hydrazine-hydrate is connected to the kaolinite inner surface OH groups by the formation of hydrogen bonds. Based on the thermoanalytical results two different types of bonded reagent could be distinguished in the complex. Type 1 reagent (approx. 0.06 mol hydrazine-hydrate/mol inner surface OH) is liberated between 77 and 103°C. Type 2 reagent is lost between 103 and 227°C, corresponding to a quantity of 0.36 mol hydrazine/mol inner surface OH. When heating the complex to 77°C under CRTA conditions a new reflection appears in the XRD pattern with a d-value of 9.6 Å, in addition to the 10.2 Ĺ reflection. This new reflection disappears in contact with moist air and the complex re-expands to the original d-value of 10.2 Å in a few h. The appearance of the 9.6 Å reflection is interpreted as the expansion of kaolinite with hydrazine alone, while the 10.2 Å one is due to expansion with hydrazine-hydrate. FTIR (DRIFT) spectroscopic results showed that the treated mineral after intercalation/deintercalation and heat treatment to 300°C is slightly more ordered than the original (untreated) clay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of spectroscopy to the study of contaminants in soils is important. Among the many contaminants is arsenic, which is highly labile and may leach to non-contaminated areas. Minerals of arsenate may form depending upon the availability of specific cations for example calcium and iron. Such minerals include carminite, pharmacosiderite and talmessite. Each of these arsenate minerals can be identified by its characteristic Raman spectrum enabling identification.

Relevância:

20.00% 20.00%

Publicador: