942 resultados para complex I
Resumo:
Análisis de sensibilidad de modelos de turbulencia para un modelo CFD de viento aplicados a un emplazamiento en terreno complejo. Validación con datos de viento y turbulencia registrados a 3 alturas en 3 torres de medida.
Resumo:
Use of computational fluid dynamic (CFD) methods to predict the power production from wind entire wind farms in flat and complex terrain is presented in this paper. Two full 3D Navier–Stokes solvers for incompressible flow are employed that incorporate the k–ε and k–ω turbulence models respectively. The wind turbines (W/Ts) are modelled as momentum absorbers by means of their thrust coefficient using the actuator disk approach. The WT thrust is estimated using the wind speed one diameter upstream of the rotor at hub height. An alternative method that employs an induction-factor based concept is also tested. This method features the advantage of not utilizing the wind speed at a specific distance from the rotor disk, which is a doubtful approximation when a W/T is located in the wake of another and/or the terrain is complex. To account for the underestimation of the near wake deficit, a correction is introduced to the turbulence model. The turbulence time scale is bounded using the general “realizability” constraint for the turbulent velocities. Application is made on two wind farms, a five-machine one located in flat terrain and another 43-machine one located in complex terrain. In the flat terrain case, the combination of the induction factor method along with the turbulence correction provides satisfactory results. In the complex terrain case, there are some significant discrepancies with the measurements, which are discussed. In this case, the induction factor method does not provide satisfactory results.
Resumo:
Modelling of entire wind farms in flat and complex terrain using a full 3D Navier–Stokes solver for incompressible flow is presented in this paper. Numerical integration of the governing equations is performed using an implicit pressure correction scheme, where the wind turbines (W/Ts) are modelled as momentum absorbers through their thrust coefficient. The k–ω turbulence model, suitably modified for atmospheric flows, is employed for closure. A correction is introduced to account for the underestimation of the near wake deficit, in which the turbulence time scale is bounded using a general “realizability” constraint for the fluctuating velocities. The second modelling issue that is discussed in this paper is related to the determination of the reference wind speed for the thrust calculation of the machines. Dealing with large wind farms and wind farms in complex terrain, determining the reference wind speed is not obvious when a W/T operates in the wake of another WT and/or in complex terrain. Two alternatives are compared: using the wind speed value at hub height one diameter upstream of the W/T and adopting an induction factor-based concept to overcome the utilization of a wind speed at a certain distance upwind of the rotor. Application is made in two wind farms, a five-machine one located in flat terrain and a 43-machine one located in complex terrain.
Resumo:
Wind farms have been extensively simulated through engineering models for the estimation of wind speed and power deficits inside wind farms. These models were designed initially for a few wind turbines located in flat terrain. Other models based on the parabolic approximation of Navier Stokes equations were developed, making more realistic and feasible the operational resolution of big wind farms in flat terrain and offshore sites. These models have demonstrated to be accurate enough when solving wake effects for this type of environments. Nevertheless, few analyses exist on how complex terrain can affect the behaviour of wind farm wake flow. Recent numerical studies have demonstrated that topographical wakes induce a significant effect on wind turbines wakes, compared to that on flat terrain. This circumstance has recommended the development of elliptic CFD models which allow global simulation of wind turbine wakes in complex terrain. An accurate simplification for the analysis of wind turbine wakes is the actuator disk technique. Coupling this technique with CFD wind models enables the estimation of wind farm wakes preserving the extraction of axial momentum present inside wind farms. This paper describes the analysis and validation of the elliptical wake model CFDWake 1.0 against experimental data from an operating wind farm located in complex terrain. The analysis also reports whether it is possible or not to superimpose linearly the effect of terrain and wind turbine wakes. It also represents one of the first attempts to observe the performance of engineering models compares in large complex terrain wind farms.
Resumo:
The main problem of pedestrian dead-reckoning (PDR) using only a body-attached inertial measurement unit is the accumulation of heading errors. The heading provided by magnetometers in indoor buildings is in general not reliable and therefore it is commonly not used. Recently, a new method was proposed called heuristic drift elimination (HDE) that minimises the heading error when navigating in buildings. It assumes that the majority of buildings have their corridors parallel to each other, or they intersect at right angles, and consequently most of the time the person walks along a straight path with a heading constrained to one of the four possible directions. In this article we study the performance of HDE-based methods in complex buildings, i.e. with pathways also oriented at 45°, long curved corridors, and wide areas where non-oriented motion is possible. We explain how the performance of the original HDE method can be deteriorated in complex buildings, and also, how severe errors can appear in the case of false matches with the building's dominant directions. Although magnetic compassing indoors has a chaotic behaviour, in this article we analyse large data-sets in order to study the potential use that magnetic compassing has to estimate the absolute yaw angle of a walking person. Apart from these analysis, this article also proposes an improved HDE method called Magnetically-aided Improved Heuristic Drift Elimination (MiHDE), that is implemented over a PDR framework that uses foot-mounted inertial navigation with an extended Kalman filter (EKF). The EKF is fed with the MiHDE-estimated orientation error, gyro bias corrections, as well as the confidence over that corrections. We experimentally evaluated the performance of the proposed MiHDE-based PDR method, comparing it with the original HDE implementation. Results show that both methods perform very well in ideal orthogonal narrow-corridor buildings, and MiHDE outperforms HDE for non-ideal trajectories (e.g. curved paths) and also makes it robust against potential false dominant direction matchings.
Resumo:
Motivated by the observation of spiral patterns in a wide range of physical, chemical, and biological systems, we present an automated approach that aims at characterizing quantitatively spiral-like elements in complex stripelike patterns. The approach provides the location of the spiral tip and the size of the spiral arms in terms of their arc length and their winding number. In addition, it yields the number of pattern components (Betti number of order 1), as well as their size and certain aspects of their shape. We apply the method to spiral defect chaos in thermally driven Rayleigh- Bénard convection and find that the arc length of spirals decreases monotonically with decreasing Prandtl number of the fluid and increasing heating. By contrast, the winding number of the spirals is nonmonotonic in the heating. The distribution function for the number of spirals is significantly narrower than a Poisson distribution. The distribution function for the winding number shows approximately an exponential decay. It depends only weakly on the heating, but strongly on the Prandtl number. Large spirals arise only for larger Prandtl numbers. In this regime the joint distribution for the spiral length and the winding number exhibits a three-peak structure, indicating the dominance of Archimedean spirals of opposite sign and relatively straight sections. For small Prandtl numbers the distribution function reveals a large number of small compact pattern components.
Resumo:
We employ numerical computations of the full Navier-Stokes equations to investigate non-Boussinesq convection in a rotating system using water as the working fluid. We identify two regimes. For weak non- Boussinesq effects the Hopf bifurcation from steady to oscillating (whirling) hexagons is supercritical and typical states exhibit defect chaos that is systematically described by the cubic complex Ginzburg-Landau equation. For stronger non-Boussinesq effects the Hopf bifurcation becomes subcritical and the oscil- lations exhibit localized chaotic bursting, which is modeled by a quintic complex Ginzburg-Landau equation.
Resumo:
Cuando una colectividad de sistemas dinámicos acoplados mediante una estructura irregular de interacciones evoluciona, se observan dinámicas de gran complejidad y fenómenos emergentes imposibles de predecir a partir de las propiedades de los sistemas individuales. El objetivo principal de esta tesis es precisamente avanzar en nuestra comprensión de la relación existente entre la topología de interacciones y las dinámicas colectivas que una red compleja es capaz de mantener. Siendo este un tema amplio que se puede abordar desde distintos puntos de vista, en esta tesis se han estudiado tres problemas importantes dentro del mismo que están relacionados entre sí. Por un lado, en numerosos sistemas naturales y artificiales que se pueden describir mediante una red compleja la topología no es estática, sino que depende de la dinámica que se desarrolla en la red: un ejemplo son las redes de neuronas del cerebro. En estas redes adaptativas la propia topología emerge como consecuencia de una autoorganización del sistema. Para conocer mejor cómo pueden emerger espontáneamente las propiedades comúnmente observadas en redes reales, hemos estudiado el comportamiento de sistemas que evolucionan según reglas adaptativas locales con base empírica. Nuestros resultados numéricos y analíticos muestran que la autoorganización del sistema da lugar a dos de las propiedades más universales de las redes complejas: a escala mesoscópica, la aparición de una estructura de comunidades, y, a escala macroscópica, la existencia de una ley de potencias en la distribución de las interacciones en la red. El hecho de que estas propiedades aparecen en dos modelos con leyes de evolución cuantitativamente distintas que siguen unos mismos principios adaptativos sugiere que estamos ante un fenómeno que puede ser muy general, y estar en el origen de estas propiedades en sistemas reales. En segundo lugar, proponemos una medida que permite clasificar los elementos de una red compleja en función de su relevancia para el mantenimiento de dinámicas colectivas. En concreto, estudiamos la vulnerabilidad de los distintos elementos de una red frente a perturbaciones o grandes fluctuaciones, entendida como una medida del impacto que estos acontecimientos externos tienen en la interrupción de una dinámica colectiva. Los resultados que se obtienen indican que la vulnerabilidad dinámica es sobre todo dependiente de propiedades locales, por tanto nuestras conclusiones abarcan diferentes topologías, y muestran la existencia de una dependencia no trivial entre la vulnerabilidad y la conectividad de los elementos de una red. Finalmente, proponemos una estrategia de imposición de una dinámica objetivo genérica en una red dada e investigamos su validez en redes con diversas topologías que mantienen regímenes dinámicos turbulentos. Se obtiene como resultado que las redes heterogéneas (y la amplia mayora de las redes reales estudiadas lo son) son las más adecuadas para nuestra estrategia de targeting de dinámicas deseadas, siendo la estrategia muy efectiva incluso en caso de disponer de un conocimiento muy imperfecto de la topología de la red. Aparte de la relevancia teórica para la comprensión de fenómenos colectivos en sistemas complejos, los métodos y resultados propuestos podrán dar lugar a aplicaciones en sistemas experimentales y tecnológicos, como por ejemplo los sistemas neuronales in vitro, el sistema nervioso central (en el estudio de actividades síncronas de carácter patológico), las redes eléctricas o los sistemas de comunicaciones. ABSTRACT The time evolution of an ensemble of dynamical systems coupled through an irregular interaction scheme gives rise to dynamics of great of complexity and emergent phenomena that cannot be predicted from the properties of the individual systems. The main objective of this thesis is precisely to increase our understanding of the interplay between the interaction topology and the collective dynamics that a complex network can support. This is a very broad subject, so in this thesis we will limit ourselves to the study of three relevant problems that have strong connections among them. First, it is a well-known fact that in many natural and manmade systems that can be represented as complex networks the topology is not static; rather, it depends on the dynamics taking place on the network (as it happens, for instance, in the neuronal networks in the brain). In these adaptive networks the topology itself emerges from the self-organization in the system. To better understand how the properties that are commonly observed in real networks spontaneously emerge, we have studied the behavior of systems that evolve according to local adaptive rules that are empirically motivated. Our numerical and analytical results show that self-organization brings about two of the most universally found properties in complex networks: at the mesoscopic scale, the appearance of a community structure, and, at the macroscopic scale, the existence of a power law in the weight distribution of the network interactions. The fact that these properties show up in two models with quantitatively different mechanisms that follow the same general adaptive principles suggests that our results may be generalized to other systems as well, and they may be behind the origin of these properties in some real systems. We also propose a new measure that provides a ranking of the elements in a network in terms of their relevance for the maintenance of collective dynamics. Specifically, we study the vulnerability of the elements under perturbations or large fluctuations, interpreted as a measure of the impact these external events have on the disruption of collective motion. Our results suggest that the dynamic vulnerability measure depends largely on local properties (our conclusions thus being valid for different topologies) and they show a non-trivial dependence of the vulnerability on the connectivity of the network elements. Finally, we propose a strategy for the imposition of generic goal dynamics on a given network, and we explore its performance in networks with different topologies that support turbulent dynamical regimes. It turns out that heterogeneous networks (and most real networks that have been studied belong in this category) are the most suitable for our strategy for the targeting of desired dynamics, the strategy being very effective even when the knowledge on the network topology is far from accurate. Aside from their theoretical relevance for the understanding of collective phenomena in complex systems, the methods and results here discussed might lead to applications in experimental and technological systems, such as in vitro neuronal systems, the central nervous system (where pathological synchronous activity sometimes occurs), communication systems or power grids.
Resumo:
El proyecto TIMPANO tiene por objetivo profundizar en el desarrollo de sistemas de comunicación oral hombre-máquina atendiendo principalmente a la capacidad de dar respuesta a múltiples requerimientos de los usuarios, como pueden ser el acceso a información, la extracción de información, o el análisis de grandes repositorios de información en audio. En el proyecto se hace especial énfasis en la adaptación dinámica de los modelos a diversos contextos, tanto de tipo acústico, como semántico o de idioma.
Resumo:
The intergenic spacer (IGS) region of the ribosomal DNA was cloned and sequenced in eight species within the Gibberella fujikuroi species complex with anamorphs in the genus Fusarium , a group that includes the most relevant toxigenic species. DNA sequence analyses revealed two categories of repeated elements: long repeats and short repeats of 125 and 8 bp, respectively. Long repeats were present in two copies and were conserved in all the species analyzed, whereas different numbers of short repeat elements were observed, leading to species-specific IGS sequences with different length. In Fusarium subglutinans and Fusarium nygamai , these differences seemed to be the result of duplication and deletion events. Here, we propose a model based on unequal crossing over that can explain these processes. The partial IGS sequence of 22 Fusarium proliferatum isolates was also obtained to study variation at the intraspecific level. The results revealed no differences in terms of number or pattern of repeated elements and detected frequent gene conversion events. These results suggest that the homogenization observed at the intraspecific level might not be achieved primarily by unequal crossing-over events but rather by processes associated with recombination such as gene conversion events.
Resumo:
This paper assesses the main challenges associated with the propagation and channel modeling of broadband radio systems in a complex environment of high speed and metropolitan railways. These challenges comprise practical simulation, modeling interferences, radio planning, test trials and performance evaluation in different railway scenarios using Long Term Evolution (LTE) as test case. This approach requires several steps; the first is the use of a radio propagation simulator based on ray-tracing techniques to accurately predict propagation. Besides the radio propagation simulator, a complete test bed has been constructed to assess LTE performance, channel propagation conditions and interference with other systems in real-world environments by means of standard-compliant LTE transmissions. Such measurement results allowed us to evaluate the propagation and performance of broadband signals and to test the suitability of LTE radio technology for complex railway scenarios.
Resumo:
Scaling is becoming an increasingly important topic in the earth and environmental sciences as researchers attempt to understand complex natural systems through the lens of an ever-increasing set of methods and scales. The guest editors introduce the papers in this issue’s special section and present an overview of some of the work being done. Scaling remains one of the most challenging topics in earth and environmental sciences, forming a basis for our understanding of process development across the multiple scales that make up the subsurface environment. Tremendous progress has been made in discovery, explanation, and applications of scaling. And yet much more needs to be done and is being done as part of the modern quest to quantify, analyze, and manage the complexity of natural systems. Understanding and succinct representation of scaling properties can unveil underlying relationships between system structure and response functions, improve parameterization of natural variability and heterogeneity, and help us address societal needs by effectively merging knowledge acquired at different scales.
Resumo:
We propose a new measure to characterize the dimension of complex networks based on the ergodic theory of dynamical systems. This measure is derived from the correlation sum of a trajectory generated by a random walker navigating the network, and extends the classical Grassberger-Procaccia algorithm to the context of complex networks. The method is validated with reliable results for both synthetic networks and real-world networks such as the world air-transportation network or urban networks, and provides a computationally fast way for estimating the dimensionality of networks which only relies on the local information provided by the walkers.
Resumo:
In this paper structural controllability of complex networks is anyzed. A new algorithm is proposed which constructs a structural control scheme for a given network by avoiding the absence of dilations and by guaranteeing the accessibility of all nodes. Such accessibility is solved via a wiring procedure; this procedure, based on determining the non-accessible regions of the network, has been improved in this new proposed algorithm. This way, the number of dedicated controllers is reduced with respect to the one provided by previous existing algorithms.
Resumo:
In this paper a combined algorithm for analyzing structural controllability and observability of complex networks is presented. The algorithm addresses the two fundamental properties to guarantee structural controllability of a system: the absence of dilations and the accessibility of all nodes. The first problem is reformulated as a Maximum Matching search and it is addressed via the Hopcroft- Karp algorithm; the second problem is solved via a new wiring algorithm. Both algorithms can be combined to efficiently determine the number of required controllers and observers as well as the new required connections in order to guarantee controllability and observability in real complex networks. An application to a Twitter social network with over 100,000 nodes illustrates the proposed algorithms.