863 resultados para community battery energy storage system optimization


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The concept of demand response has a growing importance in the context of the future power systems. Demand response can be seen as a resource like distributed generation, storage, electric vehicles, etc. All these resources require the existence of an infrastructure able to give players the means to operate and use them in an efficient way. This infrastructure implements in practice the smart grid concept, and should accommodate a large number of diverse types of players in the context of a competitive business environment. In this paper, demand response is optimally scheduled jointly with other resources such as distributed generation units and the energy provided by the electricity market, minimizing the operation costs from the point of view of a virtual power player, who manages these resources and supplies the aggregated consumers. The optimal schedule is obtained using two approaches based on particle swarm optimization (with and without mutation) which are compared with a deterministic approach that is used as a reference methodology. A case study with two scenarios implemented in DemSi, a demand Response simulator developed by the authors, evidences the advantages of the use of the proposed particle swarm approaches.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to develop a flexible simulator, a variety of models for Ancillary Services (AS) negotiation has been implemented in MASCEM – a multi-agent system competitive electricity markets simulator. In some of these models, the energy and the AS are addressed simultaneously while in other models they are addressed separately. This paper presents an energy and ancillary services joint market simulation. This paper proposes a deterministic approach for solving the energy and ancillary services joint market. A case study based on the dispatch of Regulation Down, Regulation Up, Spinning Reserve, and Non-Spinning Reserve services is used to demonstrate that the use of the developed methodology is suitable for solving this kind of optimization problem. The presented case study is based on CAISO real AS market data considers fifteen bids.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Power system organization has gone through huge changes in the recent years. Significant increase in distributed generation (DG) and operation in the scope of liberalized markets are two relevant driving forces for these changes. More recently, the smart grid (SG) concept gained increased importance, and is being seen as a paradigm able to support power system requirements for the future. This paper proposes a computational architecture to support day-ahead Virtual Power Player (VPP) bid formation in the smart grid context. This architecture includes a forecasting module, a resource optimization and Locational Marginal Price (LMP) computation module, and a bid formation module. Due to the involved problems characteristics, the implementation of this architecture requires the use of Artificial Intelligence (AI) techniques. Artificial Neural Networks (ANN) are used for resource and load forecasting and Evolutionary Particle Swarm Optimization (EPSO) is used for energy resource scheduling. The paper presents a case study that considers a 33 bus distribution network that includes 67 distributed generators, 32 loads and 9 storage units.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Smart grids are envisaged as infrastructures able to accommodate all centralized and distributed energy resources (DER), including intensive use of renewable and distributed generation (DG), storage, demand response (DR), and also electric vehicles (EV), from which plug-in vehicles, i.e. gridable vehicles, are especially relevant. Moreover, smart grids must accommodate a large number of diverse types or players in the context of a competitive business environment. Smart grids should also provide the required means to efficiently manage all these resources what is especially important in order to make the better possible use of renewable based power generation, namely to minimize wind curtailment. An integrated approach, considering all the available energy resources, including demand response and storage, is crucial to attain these goals. This paper proposes a methodology for energy resource management that considers several Virtual Power Players (VPPs) managing a network with high penetration of distributed generation, demand response, storage units and network reconfiguration. The resources are controlled through a flexible SCADA (Supervisory Control And Data Acquisition) system that can be accessed by the evolved entities (VPPs) under contracted use conditions. A case study evidences the advantages of the proposed methodology to support a Virtual Power Player (VPP) managing the energy resources that it can access in an incident situation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Currently, power systems (PS) already accommodate a substantial penetration of distributed generation (DG) and operate in competitive environments. In the future, as the result of the liberalisation and political regulations, PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage and provide market agents to ensure a flexible and secure operation. This cannot be done with the traditional PS operational tools used today like the quite restricted information systems Supervisory Control and Data Acquisition (SCADA) [1]. The trend to use the local generation in the active operation of the power system requires new solutions for data management system. The relevant standards have been developed separately in the last few years so there is a need to unify them in order to receive a common and interoperable solution. For the distribution operation the CIM models described in the IEC 61968/70 are especially relevant. In Europe dispersed and renewable energy resources (D&RER) are mostly operated without remote control mechanisms and feed the maximal amount of available power into the grid. To improve the network operation performance the idea of virtual power plants (VPP) will become a reality. In the future power generation of D&RER will be scheduled with a high accuracy. In order to realize VPP decentralized energy management, communication facilities are needed that have standardized interfaces and protocols. IEC 61850 is suitable to serve as a general standard for all communication tasks in power systems [2]. The paper deals with international activities and experiences in the implementation of a new data management and communication concept in the distribution system. The difficulties in the coordination of the inconsistent developed in parallel communication and data management standards - are first addressed in the paper. The upcoming unification work taking into account the growing role of D&RER in the PS is shown. It is possible to overcome the lag in current practical experiences using new tools for creating and maintenance the CIM data and simulation of the IEC 61850 protocol – the prototype of which is presented in the paper –. The origin and the accuracy of the data requirements depend on the data use (e.g. operation or planning) so some remarks concerning the definition of the digital interface incorporated in the merging unit idea from the power utility point of view are presented in the paper too. To summarize some required future work has been identified.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the energy management of the isolated operation of small power system, the economic scheduling of the generation units is a crucial problem. Applying right timing can maximize the performance of the supply. The optimal operation of a wind turbine, a solar unit, a fuel cell and a storage battery is searched by a mixed-integer linear programming implemented in General Algebraic Modeling Systems (GAMS). A Virtual Power Producer (VPP) can optimal operate the generation units, assured the good functioning of equipment, including the maintenance, operation cost and the generation measurement and control. A central control at system allows a VPP to manage the optimal generation and their load control. The application of methodology to a real case study in Budapest Tech, demonstrates the effectiveness of this method to solve the optimal isolated dispatch of the DC micro-grid renewable energy park. The problem has been converged in 0.09 s and 30 iterations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Energy Resources Management can play a very relevant role in future power systems in SmartGrid context, with high penetration of distributed generation and storage systems. This paper deals with the importance of resources management in incident situation. The system to consider a high penetration of distributed generation, demand response, storage units and network reconfiguration. A case study evidences the advantages of using a flexible SCADA to control the energy resources in incident situation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The introduction of electricity markets and integration of Distributed Generation (DG) have been influencing the power system’s structure change. Recently, the smart grid concept has been introduced, to guarantee a more efficient operation of the power system using the advantages of this new paradigm. Basically, a smart grid is a structure that integrates different players, considering constant communication between them to improve power system operation and management. One of the players revealing a big importance in this context is the Virtual Power Player (VPP). In the transportation sector the Electric Vehicle (EV) is arising as an alternative to conventional vehicles propel by fossil fuels. The power system can benefit from this massive introduction of EVs, taking advantage on EVs’ ability to connect to the electric network to charge, and on the future expectation of EVs ability to discharge to the network using the Vehicle-to-Grid (V2G) capacity. This thesis proposes alternative strategies to control these two EV modes with the objective of enhancing the management of the power system. Moreover, power system must ensure the trips of EVs that will be connected to the electric network. The EV user specifies a certain amount of energy that will be necessary to charge, in order to ensure the distance to travel. The introduction of EVs in the power system turns the Energy Resource Management (ERM) under a smart grid environment, into a complex problem that can take several minutes or hours to reach the optimal solution. Adequate optimization techniques are required to accommodate this kind of complexity while solving the ERM problem in a reasonable execution time. This thesis presents a tool that solves the ERM considering the intensive use of EVs in the smart grid context. The objective is to obtain the minimum cost of ERM considering: the operation cost of DG, the cost of the energy acquired to external suppliers, the EV users payments and remuneration and penalty costs. This tool is directed to VPPs that manage specific network areas, where a high penetration level of EVs is expected to be connected in these areas. The ERM is solved using two methodologies: the adaptation of a deterministic technique proposed in a previous work, and the adaptation of the Simulated Annealing (SA) technique. With the purpose of improving the SA performance for this case, three heuristics are additionally proposed, taking advantage on the particularities and specificities of an ERM with these characteristics. A set of case studies are presented in this thesis, considering a 32 bus distribution network and up to 3000 EVs. The first case study solves the scheduling without considering EVs, to be used as a reference case for comparisons with the proposed approaches. The second case study evaluates the complexity of the ERM with the integration of EVs. The third case study evaluates the performance of scheduling with different control modes for EVs. These control modes, combined with the proposed SA approach and with the developed heuristics, aim at improving the quality of the ERM, while reducing drastically its execution time. The proposed control modes are: uncoordinated charging, smart charging and V2G capability. The fourth and final case study presents the ERM approach applied to consecutive days.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Future distribution systems will have to deal with an intensive penetration of distributed energy resources ensuring reliable and secure operation according to the smart grid paradigm. SCADA (Supervisory Control and Data Acquisition) is an essential infrastructure for this evolution. This paper proposes a new conceptual design of an intelligent SCADA with a decentralized, flexible, and intelligent approach, adaptive to the context (context awareness). This SCADA model is used to support the energy resource management undertaken by a distribution network operator (DNO). Resource management considers all the involved costs, power flows, and electricity prices, allowing the use of network reconfiguration and load curtailment. Locational Marginal Prices (LMP) are evaluated and used in specific situations to apply Demand Response (DR) programs on a global or a local basis. The paper includes a case study using a 114 bus distribution network and load demand based on real data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This technical report describes the work carried out in a project within the ERASMUS programme. The objective of this project was the Integration of an Automatic Warehouse in a Discrete-Part Automation System. The discrete-part automation system located at the LASCRI (Critical Systems) laboratory at ISEP was extended with automatic storage and retrieval of the manufacturing parts, through the integration of an automatic warehouse and an automatic guided vehicle (AGV).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Renewable energy sources (RES) have unique characteristics that grant them preference in energy and environmental policies. However, considering that the renewable resources are barely controllable and sometimes unpredictable, some challenges are faced when integrating high shares of renewable sources in power systems. In order to mitigate this problem, this paper presents a decision-making methodology regarding renewable investments. The model computes the optimal renewable generation mix from different available technologies (hydro, wind and photovoltaic) that integrates a given share of renewable sources, minimizing residual demand variability, therefore stabilizing the thermal power generation. The model also includes a spatial optimization of wind farms in order to identify the best distribution of wind capacity. This methodology is applied to the Portuguese power system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia do Ambiente, Perfil Gestão e Sistemas Ambientais

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The increasing integration of larger amounts of wind energy into power systems raises important operational issues, such as the balance between power generation and demand. The pumped storage hydro (PSH) units are one possible solution to mitigate this problem, once they can store the excess of energy in the periods of higher generation and lower demand. However, the behaviour of a PSH unit may differ considerably from the expected in terms of wind power integration when it operates in a liberalized electricity market under a price-maker context. In this regard, this paper models and computes the optimal PSH weekly scheduling in a price-taker and price-maker scenarios, either when the PSH unit operates in standalone and integrated in a portfolio of other generation assets. Results show that the price-maker standalone PSH will integrate less wind power in comparison with the price-taker situation. Moreover, when the PSH unit is integrated in a portfolio with a base load power plant, the role of the price elasticity of demand may completely change the operational profile of the PSH unit. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Renewable energy sources (RES) have unique characteristics that grant them preference in energy and environmental policies. However, considering that the renewable resources are barely controllable and sometimes unpredictable, some challenges are faced when integrating high shares of renewable sources in power systems. In order to mitigate this problem, this paper presents a decision-making methodology regarding renewable investments. The model computes the optimal renewable generation mix from different available technologies (hydro, wind and photovoltaic) that integrates a given share of renewable sources, minimizing residual demand variability, therefore stabilizing the thermal power generation. The model also includes a spatial optimization of wind farms in order to identify the best distribution of wind capacity. This methodology is applied to the Portuguese power system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the last twenty years genetic algorithms (GAs) were applied in a plethora of fields such as: control, system identification, robotics, planning and scheduling, image processing, and pattern and speech recognition (Bäck et al., 1997). In robotics the problems of trajectory planning, collision avoidance and manipulator structure design considering a single criteria has been solved using several techniques (Alander, 2003). Most engineering applications require the optimization of several criteria simultaneously. Often the problems are complex, include discrete and continuous variables and there is no prior knowledge about the search space. These kind of problems are very more complex, since they consider multiple design criteria simultaneously within the optimization procedure. This is known as a multi-criteria (or multiobjective) optimization, that has been addressed successfully through GAs (Deb, 2001). The overall aim of multi-criteria evolutionary algorithms is to achieve a set of non-dominated optimal solutions known as Pareto front. At the end of the optimization procedure, instead of a single optimal (or near optimal) solution, the decision maker can select a solution from the Pareto front. Some of the key issues in multi-criteria GAs are: i) the number of objectives, ii) to obtain a Pareto front as wide as possible and iii) to achieve a Pareto front uniformly spread. Indeed, multi-objective techniques using GAs have been increasing in relevance as a research area. In 1989, Goldberg suggested the use of a GA to solve multi-objective problems and since then other researchers have been developing new methods, such as the multi-objective genetic algorithm (MOGA) (Fonseca & Fleming, 1995), the non-dominated sorted genetic algorithm (NSGA) (Deb, 2001), and the niched Pareto genetic algorithm (NPGA) (Horn et al., 1994), among several other variants (Coello, 1998). In this work the trajectory planning problem considers: i) robots with 2 and 3 degrees of freedom (dof ), ii) the inclusion of obstacles in the workspace and iii) up to five criteria that are used to qualify the evolving trajectory, namely the: joint traveling distance, joint velocity, end effector / Cartesian distance, end effector / Cartesian velocity and energy involved. These criteria are used to minimize the joint and end effector traveled distance, trajectory ripple and energy required by the manipulator to reach at destination point. Bearing this ideas in mind, the paper addresses the planning of robot trajectories, meaning the development of an algorithm to find a continuous motion that takes the manipulator from a given starting configuration up to a desired end position without colliding with any obstacle in the workspace. The chapter is organized as follows. Section 2 describes the trajectory planning and several approaches proposed in the literature. Section 3 formulates the problem, namely the representation adopted to solve the trajectory planning and the objectives considered in the optimization. Section 4 studies the algorithm convergence. Section 5 studies a 2R manipulator (i.e., a robot with two rotational joints/links) when the optimization trajectory considers two and five objectives. Sections 6 and 7 show the results for the 3R redundant manipulator with five goals and for other complementary experiments are described, respectively. Finally, section 8 draws the main conclusions.