994 resultados para coercive field


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady rotating flow of an incompressible laminar viscous electrically conducting fluid over an impulsively rotated infinite disk in the presence of magnetic field and suction is investigated. We have considered the situation where there is a steady state initially (i.e., at t = 0, the fluid is rotating with constant angular velocity over a stationary disk). Then at t > 0, the disk is suddenly rotated with a constant angular velocity either in the same direction or in opposite direction to that of the fluid rotation which causes unsteadiness in the flow field. The effect of the impulsive motion is found to be more pronounced on the tangential shear stress than on the radial shear stress. When the disk and the fluid rotate in the same direction, the tangential shear stress at the surface changes sign in a small time interval immediately after the start of the impulsive motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study electronic transport across a helical edge state exposed to a uniform magnetic ((B) over right arrow) field over a finite length. We show that this system exhibits Fabry-Perot-type resonances in electronic transport. The intrinsic spin anisotropy of the helical edge states allows us to tune these resonances by changing the direction of the (B) over right arrow field while keeping its magnitude constant. This is in sharp contrast to the case of nonhelical one-dimensional electron gases with a parabolic dispersion, where similar resonances do appear in individual spin channels (up arrow and down arrow) separately which, however, cannot be tuned by merely changing the direction of the (B) over right arrow field. These resonances provide a unique way to probe the helical nature of the theory. We study the robustness of these resonances against a possible static impurity in the channel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we observe gate tunable negative differential conductance (NDC) and current saturation in single layer and bilayer graphene transistor at high source-drain field, which arise due to the interplay among (1) self-heating, (2) hot carrier injection, and (3) drain induced minority carrier injection. The magnitude of the NDC is found to be reduced for a bilayer, in agreement with its weaker carrier-optical phonon coupling and less efficient hot carrier injection. The contributions of different mechanisms to the observed results are decoupled through fast transient measurements with nanosecond resolution. The findings provide insights into high field transport in graphene. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4754103]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the field emission studies of a new type of field emitter, zinc oxide (ZnO) core/graphitic (g-C) shell nanowires are presented. The nanowires are synthesized by chemical vapor deposition of zinc acetate at 1300 degrees C Scanning and transmission electron microscopy characterization confirm high aspect ratio and novel core-shell morphology of the nanowires. Raman spectrum of the nanowires mat represents the characteristic Raman modes from g-C shell as well as from the ZnO core. A low turn on field of 2.75 V/mu m and a high current density of 1.0 mA/cm(2) at 4.5 V/mu m for ZnO/g-C nanowires ensure the superior field emission behavior compared to the bare ZnO nanowires. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this communication, we report the synthesis of a novel diketopyrrolopyrrole-diketopyrrolopyrrole (DPP-DPP)-based conjugated copolymer and its application in high-mobility organic field-effect transistors. Copolymerization of DPP with DPP yields a copolymer with exceptional properties such as extended absorption characteristics (up to similar to 1100 nm) and field-effect electron mobility values of >1 cm(2) V-1 s(-1). The synthesis of this novel DPP-DPP copolymer in combination with the demonstration of transistors with extremely high electron mobility makes this work an important step toward a new family of DPP-DPP copolymers for application in the general area of organic optoelectronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new thieno3,2-b]thiophenediketopyrrolopyrrole-benzo1,2-b:4,5-b']dithio phene based narrow optical gap co-polymer (PTTDPP-BDT) has been synthesized and characterized for field-effect transistors and solar cells. In field-effect transistors the polymer exhibited ambipolar charge transport behaviour with maximum hole and electron mobilities of 10(-3) cm(2) V-1 s(-1) and 10(-5) cm(2)V(-1) s(-1), respectively. The respectable charge transporting properties of the polymer were consistent with X-ray diffraction measurements that showed close molecular packing in the solid state. The difference in hole and electron mobilities was explained by density functional theory calculations, which showed that the highest occupied molecular orbital was delocalized along the polymer backbone with the lowest unoccupied molecular orbital localized on the bis(thieno3,2-b]thiophene)diketopyrrolopyrrole units. Bulk heterojunction photovoltaic devices with the fullerene acceptor PC70BM were fabricated and delivered a maximum conversion efficiency of 3.3% under AM1.5G illumination. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the first observation and analytical model of deformation and spreading of droplets on a vibrating surface under the influence of an ultrasonic standing pressure field. The standing wave allows the droplet to spread, and the spreading rate varies inversely with viscosity. In low viscosity droplets, the synergistic effect of radial acoustic force and the transducer surface acceleration also leads to capillary waves. These unstable capillary modes grow to cause ultimate disintegration into daughter droplets. We find that using nanosuspensions, spreading and disintegration can be prevented by suppressing the development of capillary modes and subsequent break-up. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4757567]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lead free ferroelectric Na1/2Bi1/2TiO3 (NBT) is shown to exhibit electric-field-induced monoclinic (Cc) to rhombohedral (R3c) phase transformation at room temperature. This phenomenon has been analyzed both from the viewpoint of the intrinsic polarization rotation and adaptive phase models. In analogy with the morphotropic phase boundary systems, NBT seems to possess intrinsic competing ferroelectric instabilities near room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the distinct glassy transport phenomena associated with the phase separated and spin-glass-like phases of La0.85Sr0.15CoO3, prepared under different heat-treatment conditions. The low-temperature annealed (phase-separated) sample, exhibits a small change in resistance, with evolution of time, as compared to the high-temperature annealed (spin glass) one. However, the resistance change as a function of time, in both cases, is well described by a stretched exponential fit, signifying the slow dynamics. Moreover, the ultraviolet spectroscopy study evidences a relatively higher density of states in the vicinity of EF for low-temperature annealed sample and this correctly points to its less semiconducting behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic/Porcelain suspension disc insulators are widely used in power systems to provide electrical insulation and mechanically support for high-voltage transmission lines. These insulators are subjected to a variety of stresses, including mechanical, electrical and environmental. These stresses act in unison. The exact nature and magnitude of these stresses vary significantly and depends on insulator design, application and its location. Due to various reasons the insulator disc can lose its electrical insulation properties without any noticeable mechanical failure. Such a condition while difficult to recognize, can enhance the stress on remaining healthy insulator discs in the string further may lead to a flashover. To understand the stress enhancement due to faulty discs in a string, attempt has been made to simulate the potential and electric field profiles for various disc insulators presently used in the country. The results of potential and electric filed stress obtained for normal and strings with faulty insulator discs are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The curvature related locking phenomena in the out-of-plane deformation of Timoshenko and Euler-Bernoulli curved beam elements are demonstrated and a novel approach is proposed to circumvent them. Both flexure and Torsion locking phenomena are noticed in Timoshenko beam and torsion locking phenomenon alone in Euler-Bernoulli beam. Two locking-free curved beam finite element models are developed using coupled polynomial displacement field interpolations to eliminate these locking effects. The coupled polynomial interpolation fields are derived independently for Timoshenko and Euler-Bernoulli beam elements using the governing equations. The presented of penalty terms in the couple displacement fields incorporates the flexure-torsion coupling and flexure-shear coupling effects in an approximate manner and produce no spurious constraints in the extreme geometric limits of flexure, torsion and shear stiffness. the proposed couple polynomial finite element models, as special cases, reduce to the conventional Timoshenko beam element and Euler-Bernoulli beam element, respectively. These models are shown to perform consistently over a wide range of flexure-to-shear (EI/GA) and flexure-to-torsion (EI/GJ) stiffness ratios and are inherently devoid of flexure, torsion and shear locking phenomena. The efficacy, accuracy and reliability of the proposed models to straight and curved beam applications are demonstrated through numerical examples. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a singular edge-based smoothed finite element method (sES-FEM) for mechanics problems with singular stress fields of arbitrary order. The sES-FEM uses a basic mesh of three-noded linear triangular (T3) elements and a special layer of five-noded singular triangular elements (sT5) connected to the singular-point of the stress field. The sT5 element has an additional node on each of the two edges connected to the singular-point. It allows us to represent simple and efficient enrichment with desired terms for the displacement field near the singular-point with the satisfaction of partition-of-unity property. The stiffness matrix of the discretized system is then obtained using the assumed displacement values (not the derivatives) over smoothing domains associated with the edges of elements. An adaptive procedure for the sES-FEM is proposed to enhance the quality of the solution with minimized number of nodes. Several numerical examples are provided to validate the reliability of the present sES-FEM method. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use a self-consistent strong-coupling expansion for the self-energy (perturbation theory in the hopping) to describe the nonequilibrium dynamics of strongly correlated lattice fermions. We study the three-dimensional homogeneous Fermi-Hubbard model driven by an external electric field showing that the damping of the ensuing Bloch oscillations depends on the direction of the field and that for a broad range of field strengths a long-lived transient prethermalized state emerges. This long-lived transient regime implies that thermal equilibrium may be out of reach of the time scales accessible in present cold atom experiments but shows that an interesting new quasiuniversal transient state exists in nonequilibrium governed by a thermalized kinetic energy but not a thermalized potential energy. In addition, when the field strength is equal in magnitude to the interaction between atoms, the system undergoes a rapid thermalization, characterized by a different quasiuniversal behavior of the current and spectral function for different values of the hopping. DOI: 10.1103/PhysRevLett.109.260402

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The majority of studies pertaining to lead retention by clays and soils have examined the mechanisms, kinetics, and adsorption isotherms using the batch experiment technique that employs solid: water extracts of 1:10 and 1:20. Field soil deposits generally have much lower gravimetric water content ranging between 9 and 45%. Given the wide disparity in the solids: water ratio employed in the batch experiment technique and that prevailing in field deposits, this paper examines the lead retention characteristics of soils at field moisture contents (6%, 13%, and 25%) using artificially lead-contaminated soil specimens. A residually derived (i.e., formed by in-situ weathering of parent rock) red soil was used to prepare the artificially contaminated soil specimens. The impact of variations in clay content on lead retention was examined by diluting the residual soil with various amounts (0 to 60%) of river sand. Soil specimens remolded at 6 and 13% moisture contents produced very stiff to hard soils on compaction, while specimens remolded at 25% moisture content existed in the slurry state. The soil specimens were contaminated with low (30mg/kg) to high (2500mg/kg) concentrations of lead ions by remolding them with 160ppm to 10,000ppm ionic lead solutions. Lead retention by soils at field moisture contents was determined by extracting the lead from the soil using a water leach test. Experimental results showed that the bulk (71 to 99%) of the added lead was retained by the soil in insoluble form at the field moisture content. Correlations between the amount of lead retained and soil/solution parameters indicated that the amounts of Pb retained at field moisture content is a function of the initial Pb addition, total sand content, effective clay porosity, and soil pH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field emission of reduced graphene oxide coated on polystyrene film is studied in both parallel and perpendicular configurations. Low turn-on field of 0.6 V/lm and high emission current density of 200 mA/cm(2) are observed in perpendicular configuration (along the cross section), whereas a turn-on field of 6 V/lm and current density of 20 mu A/cm(2) are obtained in parallel configuration (top surface). The emission characteristics follow Fowler-Nordheim (FN) tunneling and the values of enhancement factor estimated from FN plots are 5818 (perpendicular) and 741 (parallel). Furthermore, stability and repeatability of the field emission characteristics in perpendicular configuration are presented. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4788738]