865 resultados para climate-change
Resumo:
Throughout their history mountain communities have had to adapt to changing environmental and socio-economic conditions. They have developed strategies and specialized knowledge to sustain their livelihoods in a context of adverse climatic events and constant change. As negotiations and discussions on climate change emphasize the critical need for locally relevant and community owned adaptation strategies, there is a need for new tools to capitalize on this local knowledge and endogenous potential for innovation. The toolkit Promoting Local Innovation (PLI) was designed by the Centre for Development and Environment (CDE) of the University of Bern, Switzerland, to facilitate a participatory social learning process which identifies locally available innovations that can be implemented for community development. It is based on interactive pedagogy and joint learning among different stakeholders in the local context. The tried-and-tested tool was developed in the Andean region in 2004, and then used in International Union for Conservation of Nature (IUCN) climate change adaptation projects in Thailand, Burkina Faso, Senegal, and Chile. These experiences showed that PLI can be used to involve all relevant stakeholders in establishing strategies and actions needed for rural communities to adapt to climate change impacts, while building on local innovation potential and promoting local ownership
Resumo:
This article examines the issue of climate change in the context of ecocriticism. It analyzes some of the narrative forms employed in the mediation of climate change science, focusing on those used by mediators who are not themselves scientists in the transmission of scientific information to a nonspecialist readership or audience. It reviews four relevant works that combine the communication of scientific theories and facts with pedagogical and motivational impulses. These include David Guggenheimer’s documentary film An Inconvenient Truth, Fred Pearce’s book The Last Generation: How Nature Will Take Her Revenge for Climate Change and the climate change manuals The Live Earth Global Warming Survival Handbook and How to Save the Climate.
Resumo:
Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species’ occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species’ occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change.
Resumo:
We synthesized published data on the erosion of the Alpine foreland basin and apatite fission-track ages from the Alps to infer the erosional sediment budget history for the past 5 m.y. The data reveal that erosion of the Alpine foreland basin is highest in front of the western Alps (between 2 and 0.6 km) and decreases eastward over a distance of 700 km to the Austrian foreland basin (similar to 200 m). For the western Alps, erosion rates are >0.6 km/m.y., while erosion rates for the eastern foreland basin and the adjacent eastern Alps are <0.1 km/m.y., except for a small-scale signal in the Tauern Window. The results yield a large ellipsoidal, orogen-crossing pattern of erosion, centered along the western Alps. We suggest that accelerated erosion of the western Alps and their foreland basin occurred in response to regional-scale surface uplift, related to lithospheric unloading of the Eurasian slab along the Eurasian-Adriatic plate boundary. While we cannot rule out recent views that global climate change led to substantial erosion of the European Alps since 5 Ma, we postulate that regional-scale tectonic processes have driven erosion during this time, modulated by an increased erosional flux in response to Quaternary glaciations.
Resumo:
– Swiss forests experience strong impacts under the CH2011 scenarios, partly even for the low greenhouse gas scenario RCP3PD. Negative impacts prevail in low-elevation forests, whereas mostly positive impacts are expected in high-elevation forests. – Major changes in the distribution of the two most important tree species, Norway spruce and European beech, are expected. Growth conditions for spruce improve in a broad range of scenarios at presently cool high-elevation sites with plentiful precipitation, but in the case of strong warming (A1B and A2) spruce and beech are at risk in large parts of the Swiss Plateau. – High elevation forests that are temperature-limited will show little change in species composition but an increase in biomass. In contrast, forests at low elevations in warm-dry inner-Alpine valleys are sensitive to even moderate warming and may no longer sustain current biomass and species. – Timber production potential, carbon storage, and protection from avalanches and rockfall react differently to climate change, with an overall tendency to deteriorate at low elevations, and improve at high elevations. – Climate change will affect forests also indirectly, e.g., by increasing the risk of infestation by spruce bark beetles, which will profit from an extended flight period and will produce more generations per year.
Resumo:
Climate adaptation policies increasingly incorporate sustainability principles into their design and implementation. Since successful adaptation by means of adaptive capacity is recognized as being dependent upon progress toward sustainable development, policy design is increasingly characterized by the inclusion of state and non-state actors (horizontal actor integration), cross-sectoral collaboration, and inter-generational planning perspectives. Comparing four case studies in Swiss mountain regions, three located in the Upper Rhone region and one case from western Switzerland, we investigate how sustainability is put into practice. We argue that collaboration networks and sustainability perceptions matter when assessing the implementation of sustainability in local climate change adaptation. In other words, we suggest that adaptation is successful where sustainability perceptions translate into cross-sectoral integration and collaboration on the ground. Data about perceptions and network relations are assessed through surveys and treated via cluster and social network analysis.
Resumo:
The paper discusses how Kenyan policies and organisations address gender equality in climate change-related responses. The political support for gender issues is reflected in presidential directives on various actions for achieving gender equality such as the establishment of gender desk officers and ensuring 30 per cent female representation in government. Despite the well-advanced gender mainstreaming policy in Kenya, few policies focus on climate change and even fewer on its inter-linkages with gender. At the field level, encrusted traditions, inadequately trained staff, limited financial resources, and limited awareness of the inter-linkages between gender and climate change remain major challenges to promoting gender equality in the work of government organisations. The paper thus proposes measures for addressing these challenges and strengthening gender equality in responses to climate change.
Resumo:
This study describes and discusses initiatives taken by public (water) agencies in the state of Brandenburg in Germany, the state of California in the USA and the Ebro River Basin in Spain in response to the challenges which climate change poses for the agricultural water sector. The drivers and actors and the process of changing agricultural water governance are its particular focus. The assumptions discussed are: (i) the degree of planned and anticipatory top-down implementation processes decreases if actions are more decentralized and are introduced at the regional and local level; (ii) the degree of autonomous and responsive adaptation approaches seems to grow with actions at a lower administrative level. Looking at processes of institutional change, a variety of drivers and actors are at work such as changing perceptions of predicted climate impacts; international obligations which force politicians to take action; socio-economic concerns such as the cost of not taking action; the economic interests of the private sector. Drivers are manifold and often interact and, in many cases, reforms in the sector are driven by and associated with larger reform agendas. The results of the study may serve as a starting point in assisting water agencies in developing countries with the elaboration of coping strategies for tackling climate change-induced risks related to agricultural water management.