997 resultados para chest drain removal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Formaldehyde exposure during the menstrual cycle is known to affect the course of allergic lung inflammation. Because our previous data demonstrated that formaldehyde combined with an ovariectomy reduced allergic lung inflammation, we investigated the putative role of ovary removal and progesterone treatment when considering the effect of formaldehyde on allergic lung inflammation. METHOD: Ovariectomized rats and their matched controls were exposed to formaldehyde (1%, 3 days, 90 min/day) or vehicle, and immediately after exposure, the rats were sensitized to ovalbumin by a subcutaneous route. After 1 week, the rats received a booster by the same route, and after an additional week, the rats were challenged with ovalbumin (1%) by an aerosol route. The leukocyte numbers, interleukin-10 (IL-10) release, myeloperoxidase activity, vascular permeability, ex vivo tracheal reactivity to methacholine and mast cell degranulation were determined 24 h later. RESULTS: Our results showed that previous exposure to formaldehyde in allergic rats decreased lung cell recruitment, tracheal reactivity, myeloperoxidase activity, vascular permeability and mast cell degranulation while increasing IL-10 levels. Ovariectomy only caused an additional reduction in tracheal reactivity without changing the other parameters studied. Progesterone treatment reversed the effects of formaldehyde exposure on ex vivo tracheal reactivity, cell influx into the lungs and mast cell degranulation. CONCLUSION: In conclusion, our study revealed that formaldehyde and ovariectomy downregulated allergic lung inflammation by IL-10 release and mast cell degranulation. Progesterone treatment increased eosinophil recruitment and mast cell degranulation, which in turn may be responsible for tracheal hyperreactivity and allergic lung inflammation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Laser hair removal is becoming an increasingly popular alternative to traditional methods such as shaving, waxing, among other methods. Semiconductor diode lasers are considered the most efficient light sources available and are especially well suited for clinical applications including hair reduction. The effectiveness of laser hair reduction depends on many variables, including the skin type of the patient. Material and Methods: A patient with Fitzpatrick Skin Type IV was submitted to laser hair removal of the arms with a high-power diode laser system with long pulses with a wavelength of 800 nm, a fluence of 40 J/cm2 and a pulse width of 20 ms. A 12-month follow-up assessment was performed and included photography and questionnaire. Results: Hypopigmentation was observed after a single laser hair removal section. After 6 months with the area totally covered, a gradual suntan with a sun screen lotion with an SPF of 15 was prescribed by the dermatologist. After 12 months of the initial treatment, a complete recovery of the hypopigmentation was achieved. Conclusion: Although a safe procedure, lasers for hair removal may be associated with adverse side effects including undesired pigment alterations. Before starting a laser hair removal treatment, patients seeking the eradication of hair should be informed that temporary, and possibly permanent, pigmentary changes may occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microalgae are sun - light cell factories that convert carbon dioxide to biofuels, foods, feeds, and other bioproducts. The concept of microalgae cultivation as an integrated system in wastewater treatment has optimized the potential of the microalgae - based biofuel production. These microorganisms contains lipids, polysaccharides, proteins, pigments and other cell compounds, and their biomass can provide different kinds of biofuels such as biodiesel, biomethane and ethanol. The algal biomass application strongly depends on the cell composition and the production of biofuels appears to be economically convenient only in conjunction with wastewater treatment. The aim of this research thesis was to investigate a biological wastewater system on a laboratory scale growing a newly isolated freshwater microalgae, Desmodesmus communis, in effluents generated by a local wastewater reclamation facility in Cesena (Emilia Romagna, Italy) in batch and semi - continuous cultures. This work showed the potential utilization of this microorganism in an algae - based wastewater treatment; Desmodesmus communis had a great capacity to grow in the wastewater, competing with other microorganisms naturally present and adapting to various environmental conditions such as different irradiance levels and nutrient concentrations. The nutrient removal efficiency was characterized at different hydraulic retention times as well as the algal growth rate and biomass composition in terms of proteins, polysaccharides, total lipids and total fatty acids (TFAs) which are considered the substrate for biodiesel production. The biochemical analyses were coupled with the biomass elemental analysis which specified the amount of carbon and nitrogen in the algal biomass. Furthermore photosynthetic investigations were carried out to better correlate the environmental conditions with the physiology responses of the cells and consequently get more information to optimize the growth rate and the increase of TFAs and C/N ratio, cellular compounds and biomass parameter which are fundamental in the biomass energy recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Outdoor bronzes exposed to the environment form naturally a layer called patina, which may be able to protect the metallic substrate. However, since the last century, with the appearance of acid rains, a strong change in the nature and properties of the copper based patinas occurred [1]. Studies and general observations have established that bronze corrosion patinas created by acid rain are not only disfiguring in terms of loss of detail and homogeneity, but are also unstable [2]. The unstable patina is partially leached away by rainwater. This leaching is represented by green streaking on bronze monuments [3]. Because of the instability of the patina, conservation techniques are usually required. On a bronze object exposed to the outdoor environment, there are different actions of the rainfall and other atmospheric agents as a function of the monument shape. In fact, we recognize sheltered and unsheltered areas as regards exposure to rainwater [4]. As a consequence of these different actions, two main patina types are formed on monuments exposed to the outdoor environment. These patinas have different electrochemical, morphological and compositional characteristics [1]. In the case of sheltered areas, the patina contains mainly copper products, stratified above a layer strongly enriched in insoluble Sn oxides, located at the interface with the uncorroded metal. Moreover, different colors of the patina result from the exposure geometry. The surface color may be pale green for unsheltered areas, and green and mat black for sheltered areas [4]. Thus, in real outdoor bronze monuments, the corrosion behavior is strongly influenced by the exposure geometry. This must be taken into account when designing conservation procedures, since the patina is in most cases the support on which corrosion inhibitors are applied. Presently, for protecting outdoor bronzes against atmospheric corrosion, inhibitors and protective treatments are used. BTA and its derivatives, which are the most common inhibitors used for copper and its alloy, were found to be toxic for the environment and human health [5, 6]. Moreover, it has been demonstrated that BTA is efficient when applied on bare copper but not as efficient when applied on bare bronze [7]. Thus it was necessary to find alternative compounds. Silane-based inhibitors (already successfully tested on copper and other metallic substrates [8]), were taken into consideration as a non-toxic, environmentally friendly alternative to BTA derivatives for bronze protection. The purpose of this thesis was based on the assessment of the efficiency of a selected compound, to protect the bronze against corrosion, which is the 3-mercapto-propyl-trimethoxy-silane (PropS-SH). It was selected thanks to the collaboration with the Corrosion Studies Centre “Aldo Daccò” at the Università di Ferrara. Since previous studies [9, 10, 11] demonstrated that the addition of nanoparticles to silane-based inhibitors leads to an increase of the protective efficiency, we also wanted to evaluate the influence of the addition of CeO2, La2O3, TiO2 nanoparticles on the protective efficiency of 3-mercapto-propyl-trimethoxy-silane, applied on pre-patinated bronze surfaces. This study is the first section of the thesis. Since restorers have to work on patinated bronzes and not on bare metal (except for contemporary art), it is important to be able to recreate the patina, under laboratory conditions, either in sheltered or unsheltered conditions to test the coating and to obtain reliable results. Therefore, at the University of Bologna, different devices have been designed to simulate the real outdoor conditions and to create a patina which is representative of real application conditions of inhibitor or protective treatments. In particular, accelerated ageing devices by wet & dry (simulating the action of stagnant rain in sheltered areas [12]) and by dropping (simulating the leaching action of the rain in unsheltered areas [1]) tests were used. In the present work, we used the dropping test as a method to produce pre-patinated bronze surfaces for the application of a candidate inhibitor as well as for evaluating its protective efficiency on aged bronze (unsheltered areas). In this thesis, gilded bronzes were also studied. When they are exposed to the outside environment, a corrosion phenomenon appears which is due to the electrochemical couple gold/copper where copper is the anode. In the presence of an electrolyte, this phenomenon results in the formation of corrosion products than will cause a blistering of the gold (or a break-up and loss of the film in some cases). Moreover, because of the diffusion of the copper salts to the surface, aggregates and a greenish film will be formed on the surface of the sample [13]. By coating gilded samples with PropS-SH and PropS-SH containing nano-particles and carrying out accelerated ageing by the dropping test, a discussion is possible on the effectiveness of this coating, either with nano-particles or not, against the corrosion process. This part is the section 2 of this thesis. Finally, a discussion about laser treatment aiming at the assessment of reversibility/re-applicability of the PropS-SH coating can be found in section 3 of this thesis. Because the protective layer loses its efficiency with time, it is necessary to find a way of removing the silane layer, before applying a new one on the “bare” patina. One request is to minimize the damages that a laser treatment would create on the patina. Therefore, different laser fluences (energy/surface) were applied on the sample surface during the treatment process in order to find the best range of fluence. In particular, we made a characterization of surfaces before and after removal of PropS-SH (applied on a naturally patinated surface, and subsequently aged by natural exposure) with laser methods. The laser removal treatment was done by the CNR Institute of Applied Physics “Nello Carrara” of Sesto Fiorentino in Florence. In all the three sections of the thesis, a range of non-destructive spectroscopic methods (Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS), μ-Raman spectroscopy, X-Ray diffractometry (XRD)) were used for characterizing the corroded surfaces. AAS (Atomic Absorption Spectroscopy) was used to analyze the ageing solutions from the dropping test in sections 1 and 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, a multi physics simulation of an innovative safety system for light water nuclear reactor is performed, with the aim to increase the reliability of its main decay heat removal system. The system studied, denoted by the acronym PERSEO (in Pool Energy Removal System for Emergency Operation) is able to remove the decay power from the primary side of the light water nuclear reactor through a heat suppression pool. The experimental facility, located at SIET laboratories (PIACENZA), is an evolution of the Thermal Valve concept where the triggering valve is installed liquid side, on a line connecting two pools at the bottom. During the normal operation, the valve is closed, while in emergency conditions it opens, the heat exchanger is flooded with consequent heat transfer from the primary side to the pool side. In order to verify the correct system behavior during long term accidental transient, two main experimental PERSEO tests are analyzed. For this purpose, a coupling between the mono dimensional system code CATHARE, which reproduces the system scale behavior, with a three-dimensional CFD code NEPTUNE CFD, allowing a full investigation of the pools and the injector, is implemented. The coupling between the two codes is realized through the boundary conditions. In a first analysis, the facility is simulated by the system code CATHARE V2.5 to validate the results with the experimental data. The comparison of the numerical results obtained shows a different void distribution during the boiling conditions inside the heat suppression pool for the two cases of single nodalization and three volume nodalization scheme of the pool. Finaly, to improve the investigation capability of the void distribution inside the pool and the temperature stratification phenomena below the injector, a two and three dimensional CFD models with a simplified geometry of the system are adopted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study is based on the use of isotopes for evaluating the efficiency of nutrients removal of a wetland, in particular nitrogen and nitrates, also between the different habitats present in the wetland. Nutrients like nitrogen and phosphorus, normally distributed as fertilizers, are among the principal causes of diffuse pollution. This is particularly important in the Adriatic Sea, which is frequently subjected to eutrophication phenomena. So it is very crucial requalification of wetland, in which there are naturally depurative processes such as denitrification and plant uptake, which allow the reduction of pollutant loads that flow in water bodies. In this study nutrient reduction is analyzed in the wetland of the Comuna drain, which waters flow in the Venice lagoon. Chemical and isotopical analyses were performed on samples of water, vegetation, soil and sediments taken in the wetlands of the Comuna drain in four different periods of the year and on data of nitrogen and phosphorus concentration obtained by the LASA of the University of Padova. Values of total nitrogen and nitrates were obtained in order to evaluate the reduction within the different systems of the wetland. Instead, the isotopic values of nitrogen and carbon were used to evaluate which process influence more nitrogen reduction and to understand the origin of the nutrient, if it is from fertilizers, waste water or sewage. To conclude, the most important process in the wetland of the Comuna drain is plant uptake, in facts the bigger percentage of nitrogen reduction was in the period of vegetative growth. So it is important the study of isotopes in plant tissues and water residence time, whose increase would allow a greater reduction of nutrients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the current study, we analyze the effectiveness of an organosilane compound, 3-mercapto-propyl-tri-methoxy-silane (abbreviated PropS-SH), in the corrosion protection of fire-gilded bronzes. Firstly, the coating was applied on as-gilded bronze. Subsequently, it was also applied on pre-patinated bronze, because the substrate on which protective coatings are applied in real conservation interventions are corroded artifacts (cleaning procedures never remove all the corrosion products). Aiming to obtain results that simulate the situation of real artifacts, a dropping test that simulates outdoor exposure in runoff conditions (unsheltered areas of monuments) was employed in order to prepatinate the gilded bronze samples, which are the substrate for applying the protective coating. The preparation of the samples by applying the protective coating was performed in collaboration with the Corrosion Studies Centre “Aldo Daccò” from Ferrara University. After the artificial exposure cycles the samples underwent investigations through a variety of spectroscopic methods including SEM, Raman, FIB, AAS and color measurements. In order to evaluate the possible removal of the organosilane coating, protected samples were subjected to laser cleaning tests and characterized by SEM/EDS so as to assess the changes in composition and morphology of the treated surfaces. The laser cleaning treatment was performed at the Institute of Applied Physics “Nello Carrara” (CNR Sesto Fiorentino (FI)). The morphology and chemical composition of the samples was observed before and after the operation in order to obtain information about the fluence and type of laser which are best suited to the removal of this type of coating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interest of the scientific community towards organic pollutants in freshwater streams is fairly recent. During the past 50 years, thousands of chemicals have been synthesized and released into the general environment. Nowadays their occurrence and effects on several organism, invertebrates, fish, birds, reptiles and also humans are well documented. Because of their action, some of these chemicals have been defined as Endocrine Disrupters Compounds (EDCs) and the public health implications of these EDCs have been the subject of scientific debate. Most interestingly, among those that were noticed to have some influence and effects on the endocrine system were the estrone, the 17β-estradiol, the 17α-estradiol, the estriol, the 17α-ethinylestradiol, the testosterone and the progesterone. This project focused its attention on the 17β-estradiol. Estradiol, or more precisely, 17β-estradiol (also commonly referred to as E2) is a human sex hormone. It belongs to the class of steroid hormones. In spite of the effort to remove these substances from the effluents, the actual wastewater treatment plants are not able to degrade or inactivate these organic compounds that are continually poured in the ecosystem. Through this work a new system for the wastewater treatment was tested, to assess the decrease of the estradiol in the water. It involved the action of Chlorella vulgaris, a fresh water green microalga belonging to the family of the Chlorellaceae. This microorganism was selected for its adaptability and for its photosynthetic efficiency. To detect the decrease of the target compound in the water a CALUX bioassay analysis was chosen. Three different experiments were carried on to pursue the aim of the project. By analysing their results several aspects emerged. It was assessed the presence of EDCs inside the water used to prepare the culture media. C. vulgaris, under controlled conditions, could be efficient for this purpose, although further researches are essential to deepen the knowledge of this complex phenomenon. Ultimately by assessing the toxicity of the effluent against C. vulgaris, it was clear that at determined concentrations, it could affect the normal growth rate of this microorganism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The EBPR (Enhanced Biological Phosphorus Removal) is a type of secondary treatment in WWTPs (WasteWater Treatment Plants), quite largely used in full-scale plants worldwide. The phosphorus occurring in aquatic systems in high amounts can cause eutrophication and consequently the death of fauna and flora. A specific biomass is used in order to remove the phosphorus, the so-called PAOs (Polyphosphate Accumulating Organisms) that accumulate the phosphorus in form of polyphosphate in their cells. Some of these organisms, the so-called DPAO (Denitrifying Polyphosphate Accumulating Organisms) use as electron acceptor the nitrate or nitrite, contributing in this way also to the removal of these compounds from the wastewater, but there could be side reactions leading to the formation of nitrous oxides. The aim of this project was to simulate in laboratory scale a EBPR, acclimatizing and enriching the specialized biomass. Two bioreactors were operated as Sequencing Batch Reactors, one enriched in Accumulibacter, the other in Tetrasphaera (both PAOs): Tetrasphaera microorganisms are able to uptake aminoacids as carbon source, Accumulibacter uptake organic carbon (volatile fatty acids, VFA). In order to measure the removal of COD, phosphorus and nitrogen-derivate compounds, different analysis were performed: spectrophotometric measure of phosphorus, nitrate, nitrite and ammonia concentrations, TOC (Total Organic Carbon, measuring the carbon consumption), VFA via HPLC (High Performance Liquid Chromatography), total and volatile suspended solids following standard methods APHA, qualitative microorganism population via FISH (Fluorescence In Situ Hybridization). Batch test were also performed to monitor the NOx production. Both specialized populations accumulated as a result of SBR operations; however, Accumulibacter were found to uptake phosphates at higher extents. Both populations were able to remove efficiently nitrates and organic compounds occurring in the feeding. The experimental work was carried out at FCT of Universidade Nova de Lisboa (FCT-UNL) from February to July 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess the sensitivity and image quality of chest radiography (CXR) with or without dual-energy subtracted (ES) bone images in the detection of rib fractures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of our study was to compare the performance of low-dose linear slit digital radiography (DR) with computed radiography (CR) for the detection of trauma sequelae in the chest including rib fractures, pneumothorax, and lung contusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: To identify the rates and reasons for plate removal (PR) among patients treated for facial fractures. MATERIALS AND METHODS: A retrospective review of files of 238 patients. RESULTS: Forty-eight patients (20.2%) had plates removed. The reason for removal was objective in 33.3% and subjective in 29.2%. The most common subjective reason was cold sensitivity, and the most common objective reason was wound dehiscence/infection. Women had PR for subjective reasons more often than men (p=0.018). Removal was performed more often for subjective reasons after zygomatico-orbital fractures than after mandibular fractures (p=0.002). Plates inserted in the mandible from an intraoral approach were removed more frequently than extraorally inserted mandibular plates, intraorally inserted maxillary plates, and extraorally inserted plates in other locations (p<0.001). Orbital rim plates had a higher risk of being removed than maxillary or frontal bone plates (p=0.02). CONCLUSIONS: Subjective discomfort is a notable reason for PR among Finnish patients, suggesting that the cold climate has an influence on the need for removal. Patients receiving mandibular osteosynthesis with miniplates from an intraoral approach are at risk of hardware removal because of wound dehiscence/infection and loose/broken hardware, reminding us that more rigid fixation devices should not be forgotten despite the widespread use of miniplates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Removal of miniplates is a controversial topic in oral and maxillofacial surgery. Originally, miniplates were designed to be removed on completion of bone healing. The introduction of low profile titanium miniplates has led to the routine removal of miniplates becoming comparatively rare in many parts of the world. Few studies have investigated the reasons for non-routine removal of miniplates and the factors that affect osteosynthesis after osteotomy in large numbers of patients. The aim of the present study was to investigate complications related to osteosynthesis after bilateral sagittal split osteotomy (BSSO) in a large number (n=153) of patients. In addition to the rates of removal, emphasis was placed on investigating the reasons and risk factors associated with symptomatic miniplate removal. The rate of plate removal per patient was 18.6%, the corresponding rate per plate being 18.2%. Reasons for plate removal included plate-related complications in 16 patients and subjective discomfort in 13 patients. Half of the plates were removed during the first postoperative year. Smoking was the only significant predictor for plate removal. Patients undergoing orthognathic surgery should be screened with regard to smoking and encouraged and assisted to cease smoking, at least perioperatively.