974 resultados para cerebrospinal fluid flow


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mild encephalopathy with reversible splenial lesions has mainly been associated with influenza A and B virus infection. Patients present with neurologic symptoms 1 to 3 days after a prodromal illness and recover completely within a few days. Magnetic resonance imaging typically shows reversible lesions with reduced diffusion in the corpus callosum, predominantly in the splenium. We report on a 5-year old Caucasian boy who was referred with recurrent seizures and decreased level of consciousness after a 2-day prodromal fever and cough. Magnetic resonance imaging showed cytotoxic edema of the entire corpus callosum and the adjacent periventricular white matter with diffusion restriction and faint T(2)-hyperintensity. Parainfluenza virus type 1-3 infection was documented by direct immunofluorescence in the initial nasopharyngeal swab, but polymerase chain reaction for parainfluenza virus type 1-4 in the cerebrospinal fluid remained negative. This is-to our knowledge-the first description of mild encephalopathy with reversible splenial lesions in association with parainfluenza virus infection. The pathogenesis of mild encephalopathy with reversible splenial lesions, however, still remains unclear, and further studies investigating detailed mechanisms that lead to the typical brain lesions are warranted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Decompressive craniectomy (DC) due to intractably elevated intracranial pressure mandates later cranioplasty (CP). However, the optimal timing of CP remains controversial. We therefore analyzed our prospectively conducted database concerning the timing of CP and associated post-operative complications. From October 1999 to August 2011, 280 cranioplasty procedures were performed at the authors' institution. Patients were stratified into two groups according to the time from DC to cranioplasty (early, ≤2 months, and late, >2 months). Patient characteristics, timing of CP, and CP-related complications were analyzed. Overall CP was performed early in 19% and late in 81%. The overall complication rate was 16.4%. Complications after CP included epidural or subdural hematoma (6%), wound healing disturbance (5.7%), abscess (1.4%), hygroma (1.1%), cerebrospinal fluid fistula (1.1%), and other (1.1%). Patients who underwent early CP suffered significantly more often from complications compared to patients who underwent late CP (25.9% versus 14.2%; p=0.04). Patients with ventriculoperitoneal (VP) shunt had a significantly higher rate of complications after CP compared to patients without VP shunt (p=0.007). On multivariate analysis, early CP, the presence of a VP shunt, and intracerebral hemorrhage as underlying pathology for DC, were significant predictors of post-operative complications after CP. We provide detailed data on surgical timing and complications for cranioplasty after DC. The present data suggest that patients who undergo late CP might benefit from a lower complication rate. This might influence future surgical decision making regarding optimal timing of cranioplasty.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exacerbation of cerebrospinal fluid (CSF) inflammation in response to bacteriolysis by beta-lactam antibiotics contributes to brain damage and neurological sequelae in bacterial meningitis. Daptomycin, a nonlytic antibiotic acting on Gram-positive bacteria, lessens inflammation and brain injury compared to ceftriaxone. With a view to a clinical application for pediatric bacterial meningitis, we investigated the effect of combining daptomycin or rifampin with ceftriaxone in an infant rat pneumococcal meningitis model. Eleven-day-old Wistar rats with pneumococcal meningitis were randomized to treatment starting at 18 h after infection with (i) ceftriaxone (100 mg/kg of body weight, subcutaneously [s.c.], twice a day [b.i.d.]), (ii) daptomycin (10 mg/kg, s.c., daily) followed 15 min later by ceftriaxone, or (iii) rifampin (20 mg/kg, intraperitoneally [i.p.], b.i.d.) followed 15 min later by ceftriaxone. CSF was sampled at 6 and 22 h after the initiation of therapy and was assessed for concentrations of defined chemokines and cytokines. Brain damage was quantified by histomorphometry at 40 h after infection and hearing loss was assessed at 3 weeks after infection. Daptomycin plus ceftriaxone versus ceftriaxone significantly (P < 0.04) lowered CSF concentrations of monocyte chemoattractant protein 1 (MCP-1), MIP-1α, and interleukin 6 (IL-6) at 6 h and MIP-1α, IL-6, and IL-10 at 22 h after initiation of therapy, led to significantly (P < 0.01) less apoptosis, and significantly (P < 0.01) improved hearing capacity. While rifampin plus ceftriaxone versus ceftriaxone also led to lower CSF inflammation (P < 0.02 for IL-6 at 6 h), it had no significant effect on apoptosis and hearing capacity. Adjuvant daptomycin could therefore offer added benefits for the treatment of pediatric pneumococcal meningitis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Brain functions, such as learning, orchestrating locomotion, memory recall, and processing information, all require glucose as a source of energy. During these functions, the glucose concentration decreases as the glucose is being consumed by brain cells. By measuring this drop in concentration, it is possible to determine which parts of the brain are used during specific functions and consequently, how much energy the brain requires to complete the function. One way to measure in vivo brain glucose levels is with a microdialysis probe. The drawback of this analytical procedure, as with many steadystate fluid flow systems, is that the probe fluid will not reach equilibrium with the brain fluid. Therefore, brain concentration is inferred by taking samples at multiple inlet glucose concentrations and finding a point of convergence. The goal of this thesis is to create a three-dimensional, time-dependent, finite element representation of the brainprobe system in COMSOL 4.2 that describes the diffusion and convection of glucose. Once validated with experimental results, this model can then be used to test parameters that experiments cannot access. When simulations were run using published values for physical constants (i.e. diffusivities, density and viscosity), the resulting glucose model concentrations were within the error of the experimental data. This verifies that the model is an accurate representation of the physical system. In addition to accurately describing the experimental brain-probe system, the model I created is able to show the validity of zero-net-flux for a given experiment. A useful discovery is that the slope of the zero-net-flux line is dependent on perfusate flow rate and diffusion coefficients, but it is independent of brain glucose concentrations. The model was simplified with the realization that the perfusate is at thermal equilibrium with the brain throughout the active region of the probe. This allowed for the assumption that all model parameters are temperature independent. The time to steady-state for the probe is approximately one minute. However, the signal degrades in the exit tubing due to Taylor dispersion, on the order of two minutes for two meters of tubing. Given an analytical instrument requiring a five μL aliquot, the smallest brain process measurable for this system is 13 minutes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The junctional adhesion molecule (JAM)-C is a widely expressed adhesion molecule regulating cell adhesion, cell polarity and inflammation. JAM-C expression and function in the central nervous system (CNS) has been poorly characterized to date. Here we show that JAM-C(-/-) mice backcrossed onto the C57BL/6 genetic background developed a severe hydrocephalus. An in depth immunohistochemical study revealed specific immunostaining for JAM-C in vascular endothelial cells in the CNS parenchyma, the meninges and in the choroid plexus of healthy C57BL/6 mice. Additional JAM-C immunostaining was detected on ependymal cells lining the ventricles and on choroid plexus epithelial cells. Despite the presence of hemorrhages in the brains of JAM-C(-/-) mice, our study demonstrates that development of the hydrocephalus was not due to a vascular function of JAM-C as endothelial re-expression of JAM-C failed to rescue the hydrocephalus phenotype of JAM-C(-/-) C57BL/6 mice. Evaluation of cerebrospinal fluid (CSF) circulation within the ventricular system of JAM-C(-/-) mice excluded occlusion of the cerebral aqueduct as the cause of hydrocephalus development but showed the acquisition of a block or reduction of CSF drainage from the lateral to the 3(rd) ventricle in JAM-C(-/-) C57BL/6 mice. Taken together, our study suggests that JAM-C(-/-) C57BL/6 mice model the important role for JAM-C in brain development and CSF homeostasis as recently observed in humans with a loss-of-function mutation in JAM-C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The central nervous system (CNS) is an immunologically privileged site to which access of circulating immune cells is tightly controlled by the endothelial blood-brain barrier (BBB; see Glossary) localized in CNS microvessels, and the epithelial blood-cerebrospinal fluid barrier (BCSFB) within the choroid plexus. As a result of the specialized structure of the CNS barriers, immune cell entry into the CNS parenchyma involves two differently regulated steps: migration of immune cells across the BBB or BCSFB into the cerebrospinal fluid (CSF)-drained spaces of the CNS, followed by progression across the glia limitans into the CNS parenchyma. With a focus on multiple sclerosis (MS) and its animal models, this review summarizes the distinct molecular mechanisms required for immune cell migration across the different CNS barriers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: The purpose was to study the emergency management of patients with suspected meningitis to identify potential areas for improvement. METHODS: All patients who underwent cerebrospinal fluid puncture at the emergency department of the University Hospital of Bern from January 31, 2004, to October 30, 2008, were included. A total of 396 patients were included in the study. For each patient, we analyzed the sequence and timing for the following management steps: first contact with medical staff, administration of the first antibiotic dose, lumbar puncture (LP), head imaging, and blood cultures. The results were analyzed in relation to clinical characteristics and the referral diagnosis on admission. RESULTS: Of the 396 patient analyzed, 15 (3.7%) had a discharge diagnosis of bacterial meningitis, 119 (30%) had nonbacterial meningitis, and 262 (66.3%) had no evidence of meningitis. Suspicion of meningitis led to earlier antibiotic therapy than suspicion of an acute cerebral event or nonacute cerebral event (P < .0001). In patients with bacterial meningitis, the average time to antibiotics was 136 minutes, with a range of 0 to 340 minutes. Most patients (60.1%) had brain imaging studies performed before LP. On the other hand, half of the patients with a referral diagnosis of meningitis (50%) received antibiotics before performance of an LP. CONCLUSIONS: Few patients with suspected meningitis received antimicrobial therapy within the first 30 minutes after arrival, but most patients with pneumococcal meningitis and typical symptoms were treated early; patients with bacterial meningitis who received treatment late had complex medical histories or atypical presentations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The central nervous system (CNS) has long been regarded as an immune privileged organ implying that the immune system avoids the CNS to not disturb its homeostasis, which is critical for proper function of neurons. Meanwhile, it is accepted that immune cells do in fact gain access to the CNS and that immune responses can be mounted within this tissue. However, the unique CNS microenvironment strictly controls these immune reactions starting with tightly controlling immune cell entry into the tissue. The endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid (CSF) barrier, which protect the CNS from the constantly changing milieu within the bloodstream, also strictly control immune cell entry into the CNS. Under physiological conditions, immune cell migration into the CNS is kept at a very low level. In contrast, during a variety of pathological conditions of the CNS such as viral or bacterial infections, or during inflammatory diseases such as multiple sclerosis, immunocompetent cells readily traverse the BBB and likely also the choroid plexus and subsequently enter the CNS parenchyma or CSF spaces. This chapter summarizes our current knowledge of immune cell entry across the blood CNS barriers. A large body of the currently available information on immune cell entry into the CNS has been derived from studying experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Therefore, most of this chapter discussing immune cell entry during CNS pathogenesis refers to observations in the EAE model, allowing for the possibility that other mechanisms of immune cell entry into the CNS might apply under different pathological conditions such as bacterial meningitis or stroke.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The surgical technique for removal of tentorial meningiomas is described on six cats using a unilateral temporal supracerebellar transtentorial approach. Complete gross tumour resection was achieved in four of six cats. In one cat, only subtotal resection was achieved. One cat died shortly after surgery because of extensive cerebral haemorrhage. The surgical approach, combined with cisternal or ventricular cerebrospinal fluid puncture and an open-window technique (tumour fenestration and enucleation) provided sufficient visibility and tumour accessibility without excessive manipulation of the brain parenchyma. In all patients, a postoperative transient worsening of the clinical signs was observed. The neurological signs resolved with time with the exception of blindness in two cats. All five surviving cats were monitored for a mean follow-up time of 19 months (median 20 months; range 6-30 months). All patients died or were euthanased because of tumour regrowth within the follow-up period. Although challenging, surgical treatment is a useful therapeutic measure in the treatment of cats presenting with tentorial meningiomas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bacterial meningitis is characterized by an inflammatory reaction to the invading pathogens that can ultimately lead to sensorineural hearing loss, permanent brain injury, or death. The matrix metalloproteinases (MMPs) and tumor necrosis factor alpha-converting enzyme (TACE) are key mediators that promote inflammation, blood-brain barrier disruption, and brain injury in bacterial meningitis. Doxycycline is a clinically used antibiotic with anti-inflammatory effects that lead to reduced cytokine release and the inhibition of MMPs. Here, doxycycline inhibited TACE with a 50% inhibitory dose of 74 microM in vitro and reduced the amount of tumor necrosis factor alpha released into the cerebrospinal fluid by 90% in vivo. In an infant rat model of pneumococcal meningitis, a single dose of doxycycline (30 mg/kg) given as adjuvant therapy in addition to ceftriaxone 18 h after infection significantly reduced the mortality, the blood-brain barrier disruption, and the extent of cortical brain injury. Adjuvant doxycycline (30 mg/kg given subcutaneously once daily for 4 days) also attenuated hearing loss, as assessed by auditory brainstem response audiometry, and neuronal death in the cochlear spiral ganglion at 3 weeks after infection. Thus, doxycycline, probably as a result of its anti-inflammatory properties, had broad beneficial effects in the brain and the cochlea and improved survival in this model of pneumococcal meningitis in infant rats.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on a family with a 12-year-old boy who suffered from a maternally inherited syndrome characterized by a combination of sensorineural hearing loss, myoclonus epilepsy, ataxia, severe psychomotor retardation, short stature, and diabetes mellitus. First, he showed a muscular hypotonia with hearing loss; later, he developed a myoclonus epilepsy, growth failure, and severe psychomotor retardation. At the age of 10 years, he developed diabetes mellitus. After initiation of combined ubiquinone and vitamin C treatment, we observed a progression in psychomotor development. Lactate and pyruvate levels in blood and cerebrospinal fluid were normal. No ragged red fibers or ultrastructural abnormalities were seen in a skeletal muscle biopsy. Biochemical assays of respiratory chain complex activities revealed decreased activity of complexes I and IV. By sequence analysis of mitochondrial DNA encoding transfer ribonucleic acids (RNAs), a homoplasmic T to C substitution at nucleotide position 7512 was found affecting a highly conserved base pair in the tRNA(ser(UCN)) acceptor stem. Asymptomatic family members of the maternal line were heteroplasmic for the mutation in blood samples. Analysis of mitochondrial DNA in patients with hearing loss and myoclonus epilepsy is recommended, even in the absence of laboratory findings. Therapeutically, ubiquinone and antioxidants can be beneficial.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three Bavarian mountain dogs aged between 18 and 20 months, not related to each other, were presented with chronic signs of cerebellar dysfunction. On sagittal T2-weighted magnetic resonance imaging brain images, the tentative diagnosis of cerebellar hypoplasia was established based on an enlarged cerebrospinal fluid space around the cerebellum and an increased cerebrospinal fluid signal between the folia. Post-mortem examination was performed in one dog and did show an overall reduction of cerebellar size. On histopathologic examination, a selective loss of cerebellar granule cells with sparing of Purkinje cells was evident. Therefore, the Bavarian mountain dog is a breed where cerebellar cortical degeneration caused by the rather exceptional selective granule cell loss can be seen as cause of chronic, slowly progressive cerebellar dysfunction starting at an age of several months.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accumulation of iron probably predisposes the aging brain to progressive neuronal loss. We examined various markers of oxidative stress and damage in the brain and liver of 3- and 24-month-old rats following supplementation with the lipophilic iron derivative [(3,5,5-trimethylhexanoyl)ferrocene] (TMHF), which is capable of crossing the blood-brain barrier. At both ages, iron concentration increased markedly in the liver but failed to increase in the brain. In the liver of TMHF-treated young rats, levels of alpha- and gamma-tocopherols and glutathione (GSH) were also higher. In contrast, the brain displayed unaltered levels of the tocopherols and GSH. Malondialdehyde (MDA) level was also higher in the cerebrospinal fluid (CSF) and the liver but not in the brain. In old rats, the absence of an increase in iron concentration in the brain was reflected by unaltered concentrations of GSH, tocopherols, and MDA as compared to that in untreated rats. In the aging liver, concentrations of GSH and MDA increased with TMHF treatment. Morphological studies revealed unaltered levels of iron, ferritin, heme oxygenase-1 (HO-1), nitrotyrosine (NT), or MDA in the brains of both young and old rats treated with TMHF. In contrast, TMHF treatment increased the level of HO-1 in Kupffer cells, NT in hepatic endothelial cells, and MDA and ferritin in hepatocytes. Although these results demonstrated an increase in the biochemical markers of oxidative stress and damage in response to increasing concentrations of iron in the liver, they also demonstrated that the brain is well protected against dietary iron overload by using iron in a lipid-soluble formulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multiple spinal extradural meningeal cysts are rare. To the authors' knowledge, there have been only four reported cases in the world literature. The authors report a case of multiple spinal extradural meningeal cysts in a 31-year-old woman presenting with acute paraplegia. Magnetic resonance imaging of the thoracolumbar spine revealed multiple extradural cystic lesions extending from T-7 to T-8 and from T-12 to L-3. Intraoperative findings demonstrated a white, fibrous, and tense cyst filled with cerebrospinal fluid-like colorless fluid. Excision of the posterior wall of the symptomatic cyst was followed by immediate neurological improvement. The examination of the pathological specimen showed a thick duralike layer of collagen and an inner membrane of arachnoid that is often not found in these lesions. The final diagnosis was based on combined imaging, intraoperative, and histopathological findings. The authors review the literature and discuss the etiological, diagnostic, and therapeutic aspects of this lesion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Narcolepsy is usually an idiopathic disorder, often with a genetic predisposition. Symptomatic cases have been described repeatedly, often as a consequence of hypothalamic lesions. Conversely, REM (rapid eye movement) sleep behaviour disorder (RBD) is usually a secondary disorder, often due to degenerative brain stem disorders or narcolepsy. The case of a hitherto healthy man is presented, who simultaneously developed narcolepsy and RBD as the result of an acute focal inflammatory lesion in the dorsomedial pontine tegmentum in the presence of normal cerebrospinal fluid hypocretin-1 levels and in the absence of human lymphocyte antigen haplotypes typically associated with narcolepsy and RBD (DQB1*0602, DQB1*05). This first observation of symptomatic narcolepsy with RBD underlines the importance of the mediotegmental pontine area in the pathophysiology of both disorders, even in the absence of a detectable hypocretin deficiency and a genetic predisposition.