964 resultados para cellular pathways
Resumo:
This survey on calorimetry and thermodynamics of anoxibiosis applies classical and irreversible thermodynamics to interpret experimental, direct calorimetric results in order to elucidate the sequential activation of various biochemical pathways. First, the concept of direct and indirect calorimetry is expanded to incorporate the thermochemistry of aerobic and anoxic metabolism in living cells and organisms. Calorimetric studies done under normoxia as well as under physiological and environmental anoxia are presented and assessed in terms of ATP turnover rate. Present evidence suggests that unknown sources of energy in freshwater and marine invertebrates under long-term anoxia may be important. During physiological hypoxia, thermodynamically grossly inefficient pathways sustain high metabolic rates for brief periods. On the contrary, under long-term environmental anoxia, low steady-state heat dissipation is linked to the more efficient succinate, propionate, and acetate pathways. In the second part of this paper these relationships are discussed in the context of linear, irreversible thermodynamics. The calorimetric and biochemical trends during aerobic-anoxic transitions are consistent with thermodynamic optimum functions of catabolic pathways. The theory predicts a decrease of rate with an increase of thermodynamic efficiency; therefore maximum rate and maximum efficiency are mutually exclusive. Cellular changes of pH and adenylate phosphorylation potential are recognized as regulatory mechanisms in the energetic switching to propionate production. While enzyme kinetics provides one key for understanding metabolic regulation, our insight remains incomplete without a complementary thermodynamic analysis of kinetic control in energetically coupled pathways.
Resumo:
Reproductive stress is apparent inAbra alba as a result of infection with the sporocysts ofBucephaloides gracilescens, culminating in castration in heavily infected specimens. The bivalve is also subject to mechanical stress from actively growing sporocyst tubules and nutritional stress due to the nutrient requirement of large numbers of germ balls within the sporocysts. Using the digestive cell lysosomal system ofAbra as a monitor, it was possible to demonstrate quantitatively a parasite-induced cellular stress response by applying a sensitive cytochemical test for lysosomal stability. Lysosomal stability was determined as the labilisation period for latent Nacetyl-β-hexosaminidase (NAH), measured by microdensitometry. In uninfectedAbra, digestive cell lysosomal NAH expressed structure-linked latency. Hence a significantly longer labilisation period was required compared with infectedAbra, where the parasitic burden with its associated stress effects resulted in a destabilisation of the lysosomal membrane. This reduced the latency of the enzyme, so that a much shorter labilisation period was required for the stressed tissue to express maximum lysosomal enzyme activity. It is suggested that the lysosomal system of the digestive cells inAbra can be used as a sensitive monitor of the stress induced by the sporocysts and developing cercariae ofBucephaloides.
Resumo:
Structural changes were observed in the digestive tubule epithelial cells of Mytilus edulis following long-term exposure to the water accommodated fraction (WAF) of North Sea crude oil (30 μg · l−1 total oil derived aromatic hydrocarbons). The changes observed involved a reduction in the height of the digestive cells beyond that demonstrated in a normal feeding cycle. In addition there was a loss of the normal synchrony of the digestive cells to a point where nearly all the tubules exhibited an appearance similar to that which is usually termed ‘reconstituting’. These alterations were quantified using an image analysis technique and the mean height of the digestive cells used as an index of digestive function or state. Long-term exposure also induced a radical alteration of the structure of secondary lysosomes within the digestive cells, resulting in the formation of large lysosomes, believed to be autolysosomes. Stereological analyses showed that these lysosomes are reduced in numbers and greatly increased in volume in comparison with controls. There is a concomitant increase in surface area of lysosomes per unit volume of digestive cell compared with control conditions. These alterations are indicative of fundamental changes in secondary lysosomal function involving an autophagic response to oil derived hydrocarbons. which would contribute to the reduction of digestive cell cytoplasm. These cellular alterations are discussed in terms of their use as indices of cell injury, in response to oil.
Resumo:
Certain polycyclic aromatic hydrocarbons and phenobarbital induced an increase in the activity of microsomal NADPH neotetrazolium reductase (linked to mixed function oxygenase systems) in the blood cells of Mytilus edulis. Phenanthrene and methylated naphthalenes caused lysosomal destabilisation which is believed to be directly related to the mechanism of cytotoxicity in the digestive cells. The use of these cytochemical techniques as indices of aromatic hydrocarbon contamination is discussed.
Molecular And Cellular Indexes Of Pollutant Effects And Their Use In Environmental-Impact Assessment