914 resultados para cannabinoid receptor 1
Resumo:
Purpose We determined the effect of reduced muscle glycogen availability on cellular pathways regulating mitochondrial biogenesis and substrate utilization after a bout of resistance exercise. Methods Eight young, recreationally trained men undertook a glycogen depletion protocol of one-leg cycling to fatigue (LOW), while the contralateral (control) leg rested (CONT). Following an overnight fast, subjects completed 8 sets of 5 unilateral leg press repetitions (REX) at 80 % 1 Repetition Maximum (1RM) on each leg. Subjects consumed 500 mL protein/CHO beverage (20 g whey + 40 g maltodextrin) upon completion of REX and 2 h later. Muscle biopsies were obtained at rest and 1 and 4 h after REX in both legs. Results Resting muscle glycogen was higher in the CONT than LOW leg (~384 ± 114 vs 184 ± 36 mmol kg−1 dry wt; P < 0.05), and 1 h and 4 h post-exercise (P < 0.05). Phosphorylation of p53Ser15 increased 1 h post-exercise in LOW (~115 %, P < 0.05) and was higher than CONT at this time point (~87 %, P < 0.05). p38MAPKThr180/Tyr182 phosphorylation increased 1 h post-exercise in both CONT and LOW (~800–900 %; P < 0.05) but remained above rest at 4 h only in CONT (~585 %, P < 0.05; different between legs P < 0.05). Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) mRNA was elevated 4 h post-exercise in LOW (~200 %, P < 0.05; different between legs P < 0.05). There were no changes in Fibronectin type III domain-containing protein 5 (FNDC5) mRNA for CONT or LOW legs post-exercise. Conclusion Undertaking resistance exercise with low glycogen availability may enhance mitochondrial-related adaptations through p53 and PGC-1α-mediated signalling.
Resumo:
This project investigated the interactions between insulin and its receptor. A combination of computational and experimental investigations resulted in the identification of four residues in non-canonical sites that, when mutated, had detrimental effects on insulin binding. An increased understanding of the binding mechanism will aid future research into diseases involving the insulin receptor and its relatives and could potentially lead to new therapeutic avenues to combat these health related issues.
Resumo:
Multiple sclerosis (MS) is a debilitating, chronic demyelinating disease of the central nervous system affecting over 2 million people worldwide. The TAM family of receptor tyrosine kinases (TYRO3, AXL and MERTK) have been implicated as important players during demyelination in both animal models of MS and in the human disease. We therefore conducted an association study to identify single nucleotide polymorphisms (SNPs) within genes encoding the TAM receptors and their ligands associated with MS. Analysis of genotype data from a genome-wide association study which consisted of 1618 MS cases and 3413 healthy controls conducted by the Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene) revealed several SNPs within the MERTK gene (Chromosome 2q14.1, Accession Number NG_011607.1) that showed suggestive association with MS. We therefore interrogated 28 SNPs in MERTK in an independent replication cohort of 1140 MS cases and 1140 healthy controls. We found 12 SNPs that replicated, with 7 SNPs showing p-values of less than 10-5 when the discovery and replication cohorts were combined. All 12 replicated SNPs were in strong linkage disequilibrium with each other. In combination, these data suggest the MERTK gene is a novel risk gene for MS susceptibility. © 2011 Ma et al.
Resumo:
Objectives: To assess the possible association of killer immunoglobulin-like receptor (KIR) genes, specifically KIR3DL1, KIR3DS1 and KIR3DL2, with ankylosing spondylitis (AS). Methods: 14 KIR genes were genotyped in 200 UK patients with AS and 405 healthy controls using multiplex polymerase chain reaction. Sequence-specific oligonucleotide probes were used to subtype 368 cases with AS and 366 controls for 12 KIR3DL2 alleles. Differences in KIR genotypes and KIR3DL2 allele frequencies were assessed using the χp2p test. Results: KIR3DL1 and KIR3DS1 gene frequencies were very similar in cases with AS and controls (odds ratio = 1.5, 95% confidence interval 0.8 to 3.0, and odds ratio = 1.02, 95% confidence interval 0.2 to 5.3, respectively). KIR3DL2 allele frequencies were not significantly different between cases with AS and controls. Conclusions: Neither the KIR gene content of particular KIR haplotypes nor KIR3DL2 polymorphisms contribute to AS.
Resumo:
Objective. To examine whether the T cell receptor (TCR) A or TCRB loci exhibit linkage with disease in multiplex rheumatoid arthritis (RA) families. Methods. A linkage study was performed in 184 RA families from the UK Arthritis and Rheumatism Council Repository, each containing at least 1 affected sibpair. The microsatellites D14S50, TCRA, and D14S64 spanning the TCRA locus and D7S509, Vβ6.7, and D7S688 spanning the TCRB locus were used as DNA markers. The subjects were genotyped using a semiautomated polymerase chain reaction-based method. Two-point and multipoint linkage analyses were performed. Results. Nonparametric single-marker likelihood odds (LOD) scores were 0.49 (P = 0.07) for D14S50, 0.65 (P = 0.04) for TCRA, 0.07 (P = 0.29) for D14S64, 0.01 (P = 0.43) for D7S509, 0.0 (P = 0.50) for Vβ6.7, and 0.0 (P = 0.50) for D7S688. By multipoint analysis, there was no evidence of linkage at TCRB (LOD score 0), and the maximum LOD score at the TCRA locus was 0.37 (at D14S50). The presence of a susceptibility locus (LOD score < -2.0) was excluded, with lambda ≤ 1.8 at TCRA and ≤1.4 at TCRB. Conclusion. These linkage studies provide no significant evidence of a major germline-encoded TCRA or TCRB component of susceptibility to RA.
Resumo:
Objective Spondyloarthritides (SpA) occur in 1% of the population and include ankylosing spondylitis (AS) and arthropathy of inflammatory bowel disease (IBD), with characteristic spondylitis, arthritis, enthesitis, and IBD. Genetic studies implicate interleukin-23 (IL-23) receptor signaling in the development of SpA and IBD, and IL-23 overexpression in mice is sufficient for enthesitis, driven by entheseal-resident T cells. However, in genetically prone individuals, it is not clear where IL-23 is produced and how it drives the SpA syndrome, including IBD or subclinical gut inflammation of AS. Moreover, it is unclear why specific tissue involvement varies between patients with SpA. We undertook this study to determine the location of IL-23 production and its role in SpA pathogenesis in BALB/c ZAP-70W163C-mutant (SKG) mice injected intraperitoneally with β-1,3-glucan (curdlan). Methods Eight weeks after curdlan injection in wild-type or IL-17A-/- SKG or BALB/c mice, pathology was scored in tissue sections. Mice were treated with anti-IL-23 or anti-IL-22. Cytokine production and endoplasmic reticulum (ER) stress were determined in affected organs. Results In curdlan-treated SKG mice, arthritis, enthesitis, and ileitis were IL-23 dependent. Enthesitis was specifically dependent on IL-17A and IL-22. IL-23 was induced in the ileum, where it amplified ER stress, goblet cell dysfunction, and proinflammatory cytokine production. IL-17A was pathogenic, while IL-22 was protective against ileitis. IL-22+CD3- innate-like cells were increased in lamina propria mononuclear cells of ileitis-resistant BALB/c mice, which developed ileitis after curdlan injection and anti-IL-22. Conclusion In response to systemic β-1,3-glucan, intestinal IL-23 provokes local mucosal dysregulation and cytokines driving the SpA syndrome, including IL-17/IL-22-dependent enthesitis. Innate IL-22 production promotes ileal tolerance.
Resumo:
The role of germline polymorphisms of the T-cell receptor A/D and B loci in susceptibility to ankylosing spondylitis was investigated by linkage studies using microsatellite markers in 215 affected sibling pairs. The presence of a significant susceptibility gene (lambda ≤ 1.6) at the TCRA/D locus was excluded (LOD score < -2.0). At the TCRB locus, there was weak evidence of the presence of a susceptibility gene (P = 0.01, LOD score 1.1). Further family studies will be required to determine whether this is a true or false-positive finding. It is unlikely that either the TCRA/D or TCRB loci contain genes responsible for more than a moderate proportion of the non-MHC genetic susceptibility to ankylosing spondylitis.
Resumo:
Objectives: To replicate the possible genetic association between ankylosing spondylitis (AS) and TNFRSF1A. Methods: TNFRSF1A was re-sequenced in 48 individuals with AS to identify novel polymorphisms. Nine single nucleotide polymorphisms (SNPs) in TNFRSF1A and 5 SNPs in the neighbouring gene SCNN1A were genotyped in 1604 UK Caucasian individuals with AS and 1019 matched controls. An extended study was implemented using additional genotype data on 8 of these SNPs from 1400 historical controls from the 1958 British Birth Cohort. A meta-analysis of previously published results was also undertaken. Results: One novel variant in intron 6 was identified but no new coding variants. No definite associations were seen in the initial study but in the extended study there were weak associations with rs4149576 (p=0.04) and rs4149577 (p=0.007). In the metaanalysis consistent, somewhat stronger associations were seen with rs4149577 (p=0.002) and rs4149578 (p=0.006). Conclusions: These studies confirm the weak genetic associations between AS and TNFRSF1A. In view of the previously reported associations of TNFRSF1A with AS, in Caucasians and Chinese, and the biological plausibility of this candidate gene, replication of this finding in well powered studies is clearly indicated.
Resumo:
High mobility group box 1 protein (HMGB1) is a chromatin protein which can be released extracellularly, eliciting a pro-inflammatory response and promoting tissue repair process. This study aimed to examine the expression and distribution of HMGB1 and its receptor RAGE in inflamed dental pulp tissues, and to assess its effects on proliferation, migration and cytoskeleton of cultured human dental pulp cells (DPCs). Our data demonstrated that cytoplasmic expression of HMGB1 was observed in inflamed pulp tissues, while HMGB1 expression was confined in the nuclei in healthy dental pulp. The mRNA expression of HMGB1 and RAGE were significantly increased in inflamed pulps. In in vitro cultured DPCs, expression of HMGB1 in both protein and mRNA level was up-regulated after treated with lipopolysaccharide (LPS). Exogenous HMGB1 enhanced DPCs migration in a dose-dependent manner and induced the reorganization of f-actin in DPCs. Our results suggests that HMGB1 are not only involved in the process of dental pulp inflammation, but also play an important role in the recruitment of dental pulp stem cells, promoting pulp repair and regeneration.
Resumo:
Vitamin D is synthesised in the skin through the action of UVB radiation (sunlight), and 25-hydroxy vitamin D (25OHD) measured in serum as a marker of vitamin D status. Several studies, mostly conducted in high latitudes, have shown an association between type 1 diabetes mellitus (T1DM) and low serum 25OHD. We conducted a case-control study to determine whether, in a sub-tropical environment with abundant sunlight (latitude 27.5°S), children with T1DM have lower serum vitamin D than children without diabetes. Fifty-six children with T1DM (14 newly diagnosed) and 46 unrelated control children participated in the study. Serum 25OHD, 1,25-dihydroxy vitamin D (1,25(OH)2D) and selected biochemical indices were measured. Vitamin D receptor (VDR) polymorphisms Taq1, Fok1, and Apa1 were genotyped. Fitzpatrick skin classification, self-reported daily hours of outdoor exposure, and mean UV index over the 35d prior to blood collection were recorded. Serum 25OHD was lower in children with T1DM (n=56) than in controls (n=46) [mean (95%CI)=78.7 (71.8-85.6) nmol/L vs. 91.4 (83.5-98.7) nmol/L, p=0.02]. T1DM children had lower self-reported outdoor exposure and mean UV exposure, but no significant difference in distribution of VDR polymorphisms. 25OHD remained lower in children with T1DM after covariate adjustment. Children newly diagnosed with T1DM had lower 1,25(OH)2D [median (IQR)=89 (68-122) pmol/L] than controls [121 (108-159) pmol/L, p=0.03], or children with established diabetes [137 (113-153) pmol/L, p=0.01]. Children with T1DM have lower 25OHD than controls, even in an environment of abundant sunlight. Whether low vitamin D is a risk factor or consequence of T1DM is unknown. © 2012 John Wiley & Sons A/S.
Resumo:
The main genetic determinant of soluble interleukin 6 receptor (sIL-6R) levels is the missense variant rs2228145 that maps to the cleavage site of IL-6R. For each Ala allele, sIL-6R serum levels increase by ∼20 ng ml -1 and asthma risk by 1.09-fold. However, this variant does not explain the total heritability for sIL-6R levels. Additional independent variants in IL6R may therefore contribute to variation in sIL-6R levels and influence asthma risk. We imputed 471 variants in IL6R and tested these for association with sIL-6R serum levels in 360 individuals. An intronic variant (rs12083537) was associated with sIL-6R levels independently of rs4129267 (P=0.0005), a proxy single-nucleotide polymorphism for rs2228145. A significant and consistent association for rs12083537 was observed in a replication panel of 354 individuals (P=0.033). Each rs12083537:A allele increased sIL-6R serum levels by 2.4 ng ml -1. Analysis of mRNA levels in two cohorts did not identify significant associations between rs12083537 and IL6R transcription levels. On the other hand, results from 16 705 asthmatics and 30 809 controls showed that the rs12083537:A allele increased asthma risk by 1.04-fold (P=0.0419). Genetic risk scores based on IL6R regulatory variants may prove useful in explaining variation in clinical response to tocilizumab, an anti-IL-6R monoclonal antibody.
Resumo:
Objectives. It has been shown previously that IL-23R variants are associated with AS. We conducted an extended analysis in the UK population and a meta-analysis with the previously published studies, in order to refine these IL-23R associations with AS. Methods. The UK case-control study included 730 new cases and 1331 healthy controls. In the extended study, the 730 cases were combined with 1088 published cases. Allelic associations were analysed using contingency tables. In the meta-analysis, 3482 cases and 3150 controls from four different published studies and the new UK cases were combined. DerSimonian-Laird test was used to calculate random effects pooled odds ratios (ORs). Results. In the UK case-control study with new cases, four of the eight SNPs showed significant associations, whereas in the extended UK study, seven of the eight IL-23R SNPs showed significant associations (P < 0.05) with AS, maximal with rs11209032 (P < 10-5, OR 1.3), when cases with IBD and/or psoriasis were excluded. The meta-analysis showed significant associations with all eight SNPs; the strongest associations were again seen not only with rs11209032 (P = 4.06 × 10-9, OR ∼1.2) but also with rs11209026 (P < 10-10, OR ∼0.6). Conclusions. IL-23R polymorphisms are clearly associated with AS, but the primary causal association(s) is(are) still not established. These polymorphisms could contribute either increased or decreased susceptibility to AS; functional studies will be required for their full evaluation. Additionally, observed stronger associations with SNPs rs11209026 and rs11465804 upon exclusion of IBD and/or psoriasis cases may represent an independent association with AS. © The Author 2009. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved.
Resumo:
Context: Whether the action of estrogen in skeletal development depends on estrogen receptor α as encoded by the ESR1 gene is unknown. Objectives: The aim of this study was to establish whether the gain in area-adjusted bone mineral content (ABMC) in girls occurs in late puberty and to examine whether the magnitude of this gain is related to ESR1 polymorphisms. Design: We conducted a cross-sectional analysis. Setting: The study involved the Avon Longitudinal Study of Parents and Children (ALSPAC), a population-based prospective study. Participants: Participants included 3097 11-yr-olds with DNA samples, dual x-ray absorptiometry measurements, and pubertal stage information. Outcomes: Outcome measures included separate prespecified analyses in boys and girls of the relationship between ABMC derived from total body dual x-ray absorptiometry scans and Tanner stage and of the interaction between ABMC, Tanner stage, and ESR1 polymorphisms. Results: Total body less head and spinal ABMC were higher in girls in Tanner stages 4 and 5, compared with those in Tanner stages 1, 2, and 3. In contrast, height increased throughout puberty. No differences were observed in ABMC according to Tanner stage in boys. For rs2234693 (PvuII) and rs9340799 (XbaI) polymorphisms, differences in spinal ABMC in late puberty were 2-fold greater in girls who were homozygous for the C and G alleles, respectively (P = 0.001). For rs7757956, the difference in total body less head ABMC in late puberty was 50% less in individuals homozygous or heterozygous for the A allele (P = 0.006). Conclusions: Gains in ABMC in late pubertal girls are strongly associated with ESR1 polymorphisms, suggesting that estrogen contributes to this process via an estrogen receptor α-dependent pathway.
Resumo:
Context: in the ESR1 gene encoding estrogen receptor (ER)-α may be associated with fat mass in adults. Objectives: The objective of the study was to establish whether ESR1 polymorphisms influence fat mass in childhood. Design: This was a cross-sectional analysis after genotyping of rs9340799, rs2234693, and rs7757956 ESR1 polymorphisms. Setting: The Avon Longitudinal Study of Parents and Children (ALSPAC) was a population-based prospective study. Participants: Participants included 3097 11-yr-old children with results for ESR1 genotyping, puberty measures, and dual-energy x-ray absorptiometry results. Outcomes: Relationships between ESR1 polymorphisms and indices of body composition were measured. Results: The rs7757956 polymorphism was associated with fat mass (P = 0.002). Total body fat mass (adjusted for height) was reduced by 6% in children with TA/AA genotypes, and risk of being overweight (≥85th centile of fat mass) was decreased by 20%. This genetic effect appeared to interact with puberty in girls (P = 0.05 for interaction): in those with the TT genotype, total body fat mass (adjusted for height) was 18% higher in Tanner stages 3-5 vs. stages 1-2; the equivalent difference was 7% in those with TA/AA genotypes. Furthermore, the risk of being overweight was 36% lower in girls with TA/AA genotypes in Tanner stages 3-5, but no reduction was seen in those in stages 1-2. Neither rs9340799 nor rs2234693 polymorphisms were associated with body composition measures. Conclusions: Fat mass in 11-yr-old children was related to the rs7757956 ESR1 polymorphism. This association was strongest in girls in more advanced puberty, in whom the risk of being overweight was reduced by 36% in those with the TA/AA genotype.
Resumo:
Guanylyl cyclase C (GCC) is the receptor for the gastrointestinal hormones, guanylin, and uroguanylin, in addition to the bacterial heat-stable enterotoxins, which are one of the major causes of watery diarrhea the world over. GCC is expressed in intestinal cells, colorectal tumor tissue and tumors originating from metastasis of the colorectal carcinoma. We have earlier generated a monoclonal antibody to human GCC, GCC:B10, which was useful for the immunohistochemical localization of the receptor in the rat intestine (Nandi A et al., 1997, J Cell Biochem 66:500-511), and identified its epitope to a 63-amino acid stretch in the intracellular domain of GCC. In view of the potential that this antibody has for the identification of colorectal tumors, we have characterized the epitope for GCC:B10 in this study. Overlapping peptide synthesis indicated that the epitope was contained in the sequence HIPPENIFPLE. This sequence was unique to GCC, and despite a short stretch of homology with serum amyloid protein and pertussis toxin, no cross reactivity was detected. The core epitope was delineated using a random hexameric phage display library, and two categories of sequences were identified, containing either a single, or two adjacent proline residues. No sequence identified by phage display was identical to the epitope present in GCC, indicating that phage sequences represented mimotopes of the native epitope. Alignment of these sequences with HIPPENIFPLE suggested duplication of the recognition motif, which was confirmed by peptide synthesis. These studies allowed us not only to define the requirements of epitope recognition by GCC:B10 monoclonal antibody, but also to describe a novel means of epitope recognition involving topological mimicry and probable duplication of the cognate epitope in the native guanylyl cyclase C receptor sequence.