987 resultados para boron-alloyed steel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Responsive biomaterials play important roles in imaging, diagnostics, and therapeutics. Polymeric nanoparticles (NPs) containing hydrophobic and hydrophilic segments are one class of biomaterial utilized for these purposes. The incorporation of luminescent molecules into NPs adds optical imaging and sensing capability to these vectors. Here we report on the synthesis of dual-emissive, pegylated NPs with "stealth"-like properties, delivered intravenously (IV), for the study of tumor accumulation. The NPs were created by means of stereocomplexation using a methoxy-terminated polyethylene glycol and poly(D-lactide) (mPEG-PDLA) block copolymer combined with iodide-substituted difluoroboron dibenzoylmethane-poly(L-lactide) (BF2dbm(I)PLLA). Boron nanoparticles (BNPs) were fabricated in two different solvent compositions to study the effects on BNP size distribution. The physical and photoluminescent properties of the BNPs were studied in vitro over time to determine stability. Finally, preliminary in vivo results show that stereocomplexed BNPs injected IV are taken up by tumors, an important prerequisite to their use as hypoxia imaging agents in preclinical studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the U.S., coal fired power plants produce over 136 million tons of coal combustion residuals (CCRs) annually. CCRs are enriched in toxic elements, and their leachates can have significant impacts on water quality. Here we report the boron and strontium isotopic ratios of leaching experiments on CCRs from a variety of coal sources (Appalachian, Illinois, and Powder River Basins). CCR leachates had a mostly negative δ(11)B, ranging from -17.6 to +6.3‰, and (87)Sr/(86)Sr ranging from 0.70975 to 0.71251. Additionally, we utilized these isotopic ratios for tracing CCR contaminants in different environments: (1) the 2008 Tennessee Valley Authority (TVA) coal ash spill affected waters; (2) CCR effluents from power plants in Tennessee and North Carolina; (3) lakes and rivers affected by CCR effluents in North Carolina; and (4) porewater extracted from sediments in lakes affected by CCRs. The boron isotopes measured in these environments had a distinctive negative δ(11)B signature relative to background waters. In contrast (87)Sr/(86)Sr ratios in CCRs were not always exclusively different from background, limiting their use as a CCR tracer. This investigation demonstrates the validity of the combined geochemical and isotopic approach as a unique and practical identification method for delineating and evaluating the environmental impact of CCRs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particle concentration is known as a main factor that affects erosion rate of pipe bends in pneumatic conveyors. With consideration of different bend radii, the effect of particle concentration on weight loss of mild steel bends has been investigated in an industrial scale test rig. Experimental results show that there was a significant reduction of the specific erosion rate for high particle concentrations. This reduction was considered to be as a result of the shielding effect during the particle impacts. An empirical model is given. Also a theoretical study of scaling on the shielding effect, and comparisons with some existing models, are presented. It is found that the reduction in specific erosion rate (relative to particle concentration) has a stronger relationship in conveying pipelines than has been found in the erosion tester.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron abundances have been derived for seven main-sequence B- type stars from Hubble Space Telescope STIS spectra around the B III lambda2066 line. In two stars, boron appears to be undepleted with respect to the presumed initial abundance. In one star, boron is detectable but is clearly depleted. In the other four stars, boron is undetectable, implying depletions of 1-2 dex. Three of these four stars are nitrogen enriched, but the fourth shows no enrichment of nitrogen. Only rotationally induced mixing predicts that boron depletions are unaccompanied by nitrogen enrichments. The inferred rate of boron depletion from our observations is in good agreement with these predictions. Other boron-depleted nitrogen-normal stars are identified from the literature. In addition, several boron- depleted nitrogen-rich stars are identified, and while all fall on the boron-nitrogen trend predicted by rotationally induced mixing, a majority have nitrogen enrichments that are not uniquely explained by rotation. The spectra have also been used to determine iron group (Cr, Mn, Fe, and Ni) abundances. The seven B-type stars have near-solar iron group abundances, as expected for young stars in the solar neighborhood. We have also analyzed the halo B-type star PG 0832 + 676. We find [Fe/H] = -0.88 +/- 0.10, and the absence of the B III line gives the upper limit [B/H] <-2.5. These and other published abundances are used to infer the star's evolutionary status as a post-asymptotic giant branch star.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using first principles electronic structure methods, we calculate the effects of boron impurities in bulk copper and at surfaces and grain boundaries. We find that boron segregation to the Sigma5(310)[001] grain boundary should strengthen the boundary up to 1.5 ML coverage (15.24 at./nm2). The maximal effect is observed at 0.5 ML and corresponds to boron atoms filling exclusively grain boundary interstices. In copper bulk, B causes significant distortion both in interstitial and regular lattice sites, for which boron atoms are either too big or too small. The distortion is compensated to a large extent when the interstitial and substitutional boron combine together to form a strongly bound dumbbell. Our prediction is that bound boron impurities should appear in a sizable proportion if not dominate in most experimental conditions. A large discrepancy between calculated heats of solution and experimental terminal solubility of B in Cu is found, indicating either a significant failure of the density functional approach or, more likely, strongly overestimated solubility limits in the existing B-Cu phase diagram.