916 resultados para azo compounds, nanoparticles, photochemistry, reduction, surface plasmon resonance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the last decade Mongolia’s region was characterized by a rapid increase of both severity and frequency of drought events, leading to pasture reduction. Drought monitoring and assessment plays an important role in the region’s early warning systems as a way to mitigate the negative impacts in social, economic and environmental sectors. Nowadays it is possible to access information related to the hydrologic cycle through remote sensing, which provides a continuous monitoring of variables over very large areas where the weather stations are sparse. The present thesis aimed to explore the possibility of using NDVI as a potential drought indicator by studying anomaly patterns and correlations with other two climate variables, LST and precipitation. The study covered the growing season (March to September) of a fifteen year period, between 2000 and 2014, for Bayankhongor province in southwest Mongolia. The datasets used were MODIS NDVI, LST and TRMM Precipitation, which processing and analysis was supported by QGIS software and Python programming language. Monthly anomaly correlations between NDVI-LST and NDVI-Precipitation were generated as well as temporal correlations for the growing season for known drought years (2001, 2002 and 2009). The results show that the three variables follow a seasonal pattern expected for a northern hemisphere region, with occurrence of the rainy season in the summer months. The values of both NDVI and precipitation are remarkably low while LST values are high, which is explained by the region’s climate and ecosystems. The NDVI average, generally, reached higher values with high precipitation values and low LST values. The year of 2001 was the driest year of the time-series, while 2003 was the wet year with healthier vegetation. Monthly correlations registered weak results with low significance, with exception of NDVI-LST and NDVI-Precipitation correlations for June, July and August of 2002. The temporal correlations for the growing season also revealed weak results. The overall relationship between the variables anomalies showed weak correlation results with low significance, which suggests that an accurate answer for predicting drought using the relation between NDVI, LST and Precipitation cannot be given. Additional research should take place in order to achieve more conclusive results. However the NDVI anomaly images show that NDVI is a suitable drought index for Bayankhongor province.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioactive glasses, especially silica-based materials, are reported to pres- ent osteoconductive and osteoinductive properties, fundamental char- acteristics in bone regeneration [1,2]. Additionally, dexamethasone (Dex) is one of the bioactive agents able to induce the osteogenic differ- entiation of mesenchymal stem cells by increasing the alkaline phos- phatase activity, and the expression levels of Osteocalcin and Bone Sialoprotein [3]. Herein, we synthesised silica (SiO2) nanoparticles (that present inherent bioactivity and ability to act as a sustained drug delivery system), and coated their surface using poly-L-lysine (PLL) and hyaluronic acid (HA) using the layer-by-layer processing technique. Further on, we studied the influence of these new SiO2-polyelectrolyte coated nanoparticles as Dex sustained delivery systems. The SiO2 nanoparticles were loaded with Dex (SiO2-Dex) and coated with PLL and HA (SiO2-Dex-PLL-HA). Their Dex release profile was evaluated and a more sustained release was obtained with the SiO2-Dex-PLL-HA. All the particles were cultured with human bone marrow-derived mes- enchymal stem cells (hBMSCs) under osteogenic differentiation culture conditions. hBMSCs adhered, proliferated and differentiated towards the osteogenic lineage in the presence of SiO2 (DLS 174nm), SiO2-Dex (DLS 175nm) and SiO2-Dex-PLL-HA (DLS 679nm). The presence of these materials induced the overexpression of osteogenic transcripts, namely of Osteocalcin, Bone Sialoprotein and Runx2. Scanning Elec- tron Microscopy/Electron Dispersive Spectroscopy analysis demon- strated that hBMSCs synthesised calcium phosphates when cultured with SiO2-Dex and SiO2-Dex-PLL-HA nanoparticles. These results indi- cate the potential use of these SiO2-polyelectrolytes coated nanoparti- cles as dexamethasone delivery systems capable of promoting osteogenic differentiation of hBMSCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports the ability of one hyperthermophile and two thermophilic microorganisms to grow anaerobically by the reduction of chlorate and perchlorate. Physiological, genomic and proteome analyses suggest that the Crenarchaeon Aeropyrum pernix reduces perchlorate with a periplasmic enzyme related to nitrate reductases, but that it lacks a functional chlorite-disproportionating enzyme (Cld) to complete the pathway. A. pernix, previously described as a strictly aerobic microorganism, seems to rely on the chemical reactivity of reduced sulfur compounds with chlorite, a mechanism previously reported for perchlorate-reducing Archaeoglobus fulgidus. The chemical oxidation of thiosulfate (in excessive amounts present in the medium) and the reduction of chlorite result in the release of sulfate and chloride, which are the products of a biotic-abiotic perchlorate reduction pathway in A. pernix. The apparent absence of Cld in two other perchlorate-reducing microorganisms, Carboxydothermus hydrogenoformans and Moorella glycerini strain NMP, and their dependence on sulfide for perchlorate reduction is consistent with observations made on A. fulgidus. Our findings suggest that microbial perchlorate reduction at high temperature differs notably from the physiology of perchlorate- and chlorate-reducing mesophiles and that it is characterized by the lack of a chlorite dismutase and is enabled by a combination of biotic and abiotic reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work the dielectric properties and ferromagnetic resonance of Polyvinylidene- uoride embedded with 10 wt. % of NiFe2O4 or Ni0.5Zn0.5Fe2O4 nanoparticles are presented. The mechanisms of the dielectric relaxation in these two composites do not differ from each other. For more precise characterization of the dielectric relaxation, a two dimensional distribution of relaxation times was calculated from the temperature dependencies of the complex dielectric permittivity. The results obtained from the 2D distribution and the mean relaxation time are found to be consistent. The dynamics of the dielectric permittivity is described by the Arrhenius law. The energy and attempt time of the dielectric relaxators lie in a narrow energy and time region thus proving that the single type chains of polymer are responsible for a dispersion. The magnetic properties of the composites were investigated using the fer- romagnetic resonance. A single resonance line was observed for both samples. From the temperature dependence (100 K - 310 K) of the resonance eld and linewidth, the origin of the observed line was attributed to the NiFe2O4 and Ni0.5Zn0.5Fe2O4 superparamagnetic nanoparticles. By measuring lms at dif- ferent orientations with respect to the external magnetic eld, the angular dependence of the resonance was observed, indicating the magnetic dipolar in-plane interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, antibacterial properties are becoming a viable feature to be introduced in biomaterials due to the possibility of modifying the materials' surface used in medical devices in a micro/nano metric scale. As a result, it is mandatory to understand the mechanisms of the antimicrobial agents currently used and their possible failures. In this work, the antibacterial activity of ZrCNAg films is studied, taking into consideration the ability of silver nanoparticles to be dissolved when embedded into a ceramic matrix. The study focuses on the silver release evaluated by glow discharge optical emission spectroscopy and the effect of the fluid composition on this release. The results revealed a very low silver release of the films, leading to non-antibacterial activity of such materials. The silver release was found to be dependent on the electrolyte composition. NaCl (8.9 g L? 1) showed the lowest spontaneously silver ionization, while introducing the sulfates in Hanks' balanced salt solution (HBSS) such ionization is increased; finally, the proteins incorporated to the (HBSS) showed a reduction of the silver release, which also explains the low ionization in the culture medium (tryptic soy broth) that contains high quantities of proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CdS nanoparticles (NPs) were synthesized using colloidal methods and incorporated within a diureasil hybrid matrix. The surface capping of the CdS NPs by 3-mercaptopropyltrimethoxysilane (MPTMS) and 3-aminopropyltrimethoxysilane (APTMS) organic ligands during the incorporation of the NPs within the hybrid matrix has been investigated. The matrix is based on poly(ethylene oxide)/poly(propylene oxide) chains grafted to a siliceous skeleton through urea bonds and was produced by sol–gel process. Both alkaline and acidic catalysis of the sol–gel reaction were used to evaluate the effect of each organic ligand on the optical properties of the CdS NPs. The hybrid materials were characterized by absorption, steady-state and time-resolved photoluminescence spectroscopy and High Resolution Transmission Electron Microscopy (HR-TEM). The preservation of the optical properties of the CdS NPs within the diureasil hybrids was dependent on the experimental conditions used. Both organic ligands (APTMS and MPTMS) demonstrated to be crucial in avoiding the increase of size distribution and clustering of the NPs within the hybrid matrix. The use of organic ligands was also shown to influence the level of interaction between the hybrid host and the CdS NPs. The CdS NPs showed large Stokes shifts and long average lifetimes, both in colloidal solution and in the xerogels, due to the origin of the PL emission in surface states. The CdS NPs capped with MPTMS have lower PL lifetimes compared to the other xerogel samples but still larger than the CdS NPs in the original colloidal solution. An increase in PL lifetimes of the NPs after their incorporation within the hybrid matrix is related to interaction between the NPs and the hybrid host matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manganese ferrite nanoparticles with a size distribution of 26 ± 7 nm (from TEM measurements) were synthesized by the coprecipitation method. The obtained nanoparticles exhibit a superparamagnetic behaviour at room temperature with a magnetic squareness of 0.016 and a coercivity field of 6.3 Oe. These nanoparticles were either entrapped in liposomes (aqueous magnetoliposomes, AMLs) or covered with a lipid bilayer, forming solid magnetoliposomes (SMLs). Both types of magnetoliposomes, exhibiting sizes below or around 150 nm, were found to be suitable for biomedical applications. Membrane fusion between magnetoliposomes (both AMLS and SMLs) and GUVs (giant unilamellar vesicles), the latter used as models of cell membranes, was confirmed by F¨orster Resonance Energy Transfer (FRET) assays, using a NBD labeled lipid as the energy donor and Nile Red or rhodamine B-DOPE as the energy acceptor. A potential antitumor thienopyridine derivative was successfully incorporated into both aqueous and solid magnetoliposomes, pointing to a promising application of these systems in oncological therapy, simultaneously as hyperthermia agents and nanocarriers for antitumor drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia de Plantas

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Química e Biológica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Química e Biológica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biofilm formation has been pointed as a major concern in different industrial applications, namely on biomedical implants and surgical instruments, which has prompted the development of new strategies for production of efficient antimicrobial surfaces. In this work, nano âgalvanic couples were created to enhance the antibacterial properties of silver, by embedding it into amorphous carbon (a-C) matrix. The developed Ag/a-C nanocomposite coatings, deposited by magnetron sputtering, revealed an outstanding antibacterial activity against S.epidermidis, promoting a total reduction in biofilm formation with no bacteria counts in all dilution. The open circuit potential (OCP) tests in 0.9% NaCl confirmed that a-C shows a positive \OCP\ value, in contrast to Ag coating, thus enhancing the ionization of biocidal Ag+ due to the nano-galvanic couple activation. This result was confirmed by the inductively coupled plasma-optical emission spectroscopy (ICP-OES), which revealed a higher Ag ionization rate in the nanocomposite coating in comparison with the Ag coating. The surface of Ag/a-C and Ag coatings immersed in 0.9% NaCl were monitored by scanning electron microscopy (SEM) over a period of 24 hours, being found that the Ag ionization determined by ICP-OES was accompanied by an Ag nanoparticles coalescence and agglomeration in Ag/a-C coating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aromatic amines resulted from azo dyes biotransformation under anaerobic conditions are generally recalcitrant to further anaerobic degradation. The catalytic effect of carbon materials (CM) on the reduction of azo dyes is known and has been confirmed in this work by increasing 3-fold the biological reduction rate of Mordant Yellow 1 (MY1). The resulting m-nitroaniline (m-NoA) was further degraded to m-phenylenediamine (m-Phe) only in the presence of CM. The use of CM to degraded anaerobically aromatic amines resulted from azo dye reduction was never reported before. In the sequence, we studied the effect of different CM on the bioreduction of o-, m- and p-NoA. Three microporous activated carbons with different surface chemistry, original (AC0), chemical oxidized with HNO3 (ACHNO3) and thermal treated (ACH2), and three mesoporous carbons, xerogels (CXA and CXB) and nanotubes (CNT) were assessed. In the absence of CM, NoA were only partially reduced to the corresponding Phe, whereas in the presence of CM, more than 90% was converted to the corresponding Phe. ACH2 and AC0 were the best electron shuttles, increasing the rates up to 8-fold. In 24h, the biological treatment of NoA and MY1 with AC0, decreased up to 88% the toxicity towards a methanogenic consortium, as compared to the non-treated solutions. This article is protected by copyright. All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El presente proyecto plantea utilizar integralmente la técnica de Resonancia Magnética Nuclear en sólidos como un medio experimental que permite entender fenómenos de la física fundamental, como así también realizar aplicaciones de interés en el campo de la química, los desarrollos farmacéuticos y la biología. Novedosas técnicas experimentales serán empleadas, en conjunción con otras más tradicionales, en la caracterización de nuevas estructuras poliméricas acomplejadas a metales, membranas biológicas y compuestos de interés farmacéutico en vías de desarrollo, los cuales presentan el fenómeno de polimorfismo . Esto se llevará a cabo complementando los resultados de RMN en sólidos con técnicas tanto espectroscópicas como analíticas (Infrarrojo, Difracción de Rayos X, Calorimetría, RMN en solución) y trabajo interdisciplinario. Paralelamente al desarrollo de estos temas, profundizaremos mediante investigación básica, en la compresión de la dinámica cuántica y el surgimiento de la irreversibilidad en sistemas de espines nucleares. Observaremos en particular la generación, evolución y control de las coherencias cuánticas múltiples en sistemas cuánticos abiertos, lo cual nos da información sobre tamaño de clusters de espines. Esto permitirá la correcta implementación de secuencias de pulsos sofisticadas, como así también desarrollar nuevos métodos de medición aplicados a la caracterización estructural y a la dinámica molecular de sólidos complejos. Debemos resaltar que este proyecto está conectado con aspectos tanto básicos como aplicados de la RMN en sólidos como técnica experimental, la cual se desarrolla en el país únicamente en FaMAF-UNC. Se nutre además de trabajo multidisciplinario promoviendo la colaboración con investigadores y becarios de distintas áreas (física, química, farmacia, biología) provenientes de distintos puntos del país. Finalmente podemos afirmar que este plan impulsa la aplicación de la física básica proyectada a diferentes áreas del conocimiento, en el ámbito de la provincia de Córdoba. The aim of the present proyect is to use Nuclear Magnetic Resonance (NMR) as a complete techique that allows the understanding of fundamental physics phenomena and, at the same time, it leads to important applications in the fields of chemistry, pharmaceutical developments and biology. New experiments will be used together with traditional ones, in the characterization of new metal-polymer complexes, biological membranes and pharmaceutical compounds, some of them presenting polymorfism. NMR experiments will be complemented with diverse spectroscopic and analytical techniques: Infrared, X ray Diffraction, Thermal Analysis, solution NMR, as well as multidisciplinary investigation. Additionally, the present proyect plans to study in depth several aspects of quantum dynamics phenomena and decoherence in nuclear spin systems. The present proyect is connected with basic and applied aspects of the solid state NMR technique, developed in our country, only at FaMAF-UNC. It is is composed by multidisciplinary work and it promotes the collaboration with researchers and students coming from different fields (physics, chemistry, pharmaceutical developments, biology) and different points of our country.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background: Numerous studies show the benefits of exercise training after myocardial infarction (MI). Nevertheless, the effects on function and remodeling are still controversial. Objectives: To evaluate, in patients after (MI), the effects of aerobic exercise of moderate intensity on ventricular remodeling by cardiac magnetic resonance imaging (CMR). Methods: 26 male patients, 52.9 ± 7.9 years, after a first MI, were assigned to groups: trained group (TG), 18; and control group (CG), 8. The TG performed supervised aerobic exercise on treadmill twice a week, and unsupervised sessions on 2 additional days per week, for at least 3 months. Laboratory tests, anthropometric measurements, resting heart rate (HR), exercise test, and CMR were conducted at baseline and follow-up. Results: The TG showed a 10.8% reduction in fasting blood glucose (p = 0.01), and a 7.3-bpm reduction in resting HR in both sitting and supine positions (p < 0.0001). There was an increase in oxygen uptake only in the TG (35.4 ± 8.1 to 49.1 ± 9.6 mL/kg/min, p < 0.0001). There was a statistically significant decrease in the TG left ventricular mass (LVmass) (128.7 ± 38.9 to 117.2 ± 27.2 g, p = 0.0032). There were no statistically significant changes in the values of left ventricular end-diastolic volume (LVEDV) and ejection fraction in the groups. The LVmass/EDV ratio demonstrated a statistically significant positive remodeling in the TG (p = 0.015). Conclusions: Aerobic exercise of moderate intensity improved physical capacity and other cardiovascular variables. A positive remodeling was identified in the TG, where a left ventricular diastolic dimension increase was associated with LVmass reduction.