973 resultados para auditory EEG


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Everyday, humans and animals navigate complex acoustic environments, where multiple sound sources overlap. Somehow, they effortlessly perform an acoustic scene analysis and extract relevant signals from background noise. Constant updating of the behavioral relevance of ambient sounds requires the representation and integration of incoming acoustical information with internal representations such as behavioral goals, expectations and memories of previous sound-meaning associations. Rapid plasticity of auditory representations may contribute to our ability to attend and focus on relevant sounds. In order to better understand how auditory representations are transformed in the brain to incorporate behavioral contextual information, we explored task-dependent plasticity in neural responses recorded at four levels of the auditory cortical processing hierarchy of ferrets: the primary auditory cortex (A1), two higher-order auditory areas (dorsal PEG and ventral-anterior PEG) and dorso-lateral frontal cortex. In one study we explored the laminar profile of rapid-task related plasticity in A1 and found that plasticity occurred at all depths, but was greatest in supragranular layers. This result suggests that rapid task-related plasticity in A1 derives primarily from intracortical modulation of neural selectivity. In two other studies we explored task-dependent plasticity in two higher-order areas of the ferret auditory cortex that may correspond to belt (secondary) and parabelt (tertiary) auditory areas. We found that representations of behaviorally-relevant sounds are progressively enhanced during performance of auditory tasks. These selective enhancement effects became progressively larger as you ascend the auditory cortical hierarchy. We also observed neuronal responses to non-auditory, task-related information (reward timing, expectations) in the parabelt area that were very similar to responses previously described in frontal cortex. These results suggests that auditory representations in the brain are transformed from the more veridical spectrotemporal information encoded in earlier auditory stages to a more abstract representation encoding sound behavioral meaning in higher-order auditory areas and dorso-lateral frontal cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite major progress, currently available treatment options for patients suffering from schizophrenia remain suboptimal. Antipsychotic medication is one such option, and is helpful in acute phases of the disease. However, antipsychotics cause significant side-effects that often require additional medication, and can even trigger the discontinuation of treatment. Taken together, along with the fact that 20-30% of patients are medication-resistant, it is clear that new medical care options should be developed for patients with schizophrenia. Besides medication, an emerging option to treat psychiatric symptoms is through the use of neurofeedback. This technique has proven efficacy for other disorders and, more importantly, has also proven to be feasible in patients with schizophrenia. One of the major advantages of this approach is that it allows for the influence of brain states that otherwise would be inaccessible; i.e. the physiological markers underlying psychotic symptoms. EEG resting-state microstates are a very interesting electrophysiological marker of schizophrenia symptoms. Precisely, a specific class of resting-state microstates, namely microstate class D, has consistently been found to show a temporal shortening in patients with schizophrenia compared to controls, and this shortening is correlated with the presence positive psychotic symptoms. Under the scope of biological psychiatry, appropriate treatment of psychotic symptoms can be expected to modify the underlying physiological markers accompanying behavioral manifestations of a disease. We reason that if abnormal temporal parameters of resting-state microstates seem to be related to positive symptoms in schizophrenia, regulating this EEG feature might be helpful as a treatment for patients. The goal of this thesis was to prove the feasibility of microstate class D contribution self-regulation via neurofeedback. Given that no other study has attempted to regulate microstates via neurofeedback, we first tested its feasibility in a population of healthy subjects. In the first paper we describe the methodological characteristics of the neurofeedback protocol and its implementation. Neurofeedback performance was assessed by means of linear mixed effects modeling, which provided a complete profile of the neurofeedback’s training response within and between-subjects. The protocol included 20 training sessions, and each session contained three conditions: baseline (resting-state) and two active conditions: training (auditory feedback upon self-regulation performance) and transfer (self-regulation with no feedback). With linear modeling we obtained performance indices for each of them as follows: baseline carryover (baseline increments time-dependent) and learning and aptitude for each of the active conditions. Learning refers to the increase/decrease of the microstate class D contribution, time-dependent during each active condition, and aptitude refers to the constant difference of the microstate class D contribution between each active condition and baseline independent of time. The indices provided are discussed in terms of tailoring neurofeedback treatment to individual profiles so that it can be applied in future studies or clinical practice. In our sample of participants, neurofeedback proved feasible, as all participants at least showed positive results in one of the aforementioned learning indices. Furthermore, between-subjects we observed that the contribution of microstate class D across-sessions increased by 0.42% during baseline, 1.93% during training trials, and 1.83% during transfer. This range is expected to be effective in treating psychotic symptoms in patients. In the second paper presented in this thesis, we explored the possible predictors of neurofeedback success among psychological variables measured with questionnaires. An interesting finding was the negative correlation between “motivational incongruence” and some of the neurofeedback performance indices. Even though this finding requires replication, we discuss it in terms of the interfering effects of incompatible psychological processes with neurofeedback training requirements. In the third paper, we present a meta-analysis on all available studies that have related resting-state microstate abnormalities and schizophrenia. We obtained medium effect sizes for two microstate classes, namely C and D. Combining the meta-analysis results with the fact that microstate class D abnormalities are correlated with the presence of positive symptoms in patients with schizophrenia, these results add further support for the training of this precise microstate. Overall, the results obtained in this study encourage the implementation of this protocol in a population of patients with schizophrenia. However, future studies will have to show whether patients will be able to successfully self-regulate the contribution of microstate class D and, if so, whether this regulation will have an impact on symptomatology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Support Vector Machines (SVMs) are widely used classifiers for detecting physiological patterns in Human-Computer Interaction (HCI). Their success is due to their versatility, robustness and large availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM implementation and/or parameters selection are reported, making it impossible to reproduce study analysis and results. In order to perform an optimized classification and report a proper description of the results, it is necessary to have a comprehensive critical overview of the application of SVM. The aim of this paper is to provide a review of the usage of SVM in the determination of brain and muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with a description of several relevant literature implementations. Furthermore, details concerning reviewed papers are listed in tables, and statistics of SVM use in the literature are presented. Suitability of SVM for HCI is discussed and critical comparisons with other classifiers are reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To identify whether the use of a notch filter significantly affects the morphology or characteristics of the newborn auditory brainstem response (ABR) waveform and so inform future guidance for clinical practice. DESIGN: Waveforms with and without the application of a notch filter were recorded from babies undergoing routine ABR tests at 4000, 1000 and 500 Hz. Any change in response morphology was judged subjectively. Response latency, amplitude, and measurements of response quality and residual noise were noted. An ABR simulator was also used to assess the effect of notch filtering in conditions of low and high mains interference. RESULTS: The use of a notch filter changed waveform morphology for 500 Hz stimuli only in 15% of tests in newborns. Residual noise was lower when 4000 Hz stimuli were used. Response latency, amplitude, and quality were unaffected regardless of stimulus frequency. Tests with the ABR stimulator suggest that these findings can be extended to conditions of high level mains interference. CONCLUSIONS: A notch filter should be avoided when testing at 500 Hz, but at higher frequencies appears to carry no penalty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Cochlear implantation (CI) is a standard treatment for severe-profound sensorineural hearing loss (SNHL). However, consensus has yet to be reached on its effectiveness for hearing loss caused by auditory neuropathy spectrum disorder (ANSD). This review aims to summarize and synthesize current evidence of the effectiveness of CI in improving speech recognition in children with ANSD. DESIGN: Systematic review. STUDY SAMPLE: A total of 27 studies from an initial selection of 237. RESULTS: All selected studies were observational in design, including case studies, cohort studies, and comparisons between children with ANSD and SNHL. Most children with ANSD achieved open-set speech recognition with their CI. Speech recognition ability was found to be equivalent in CI users (who previously performed poorly with hearing aids) and hearing-aid users. Outcomes following CI generally appeared similar in children with ANSD and SNHL. Assessment of study quality, however, suggested substantial methodological concerns, particularly in relation to issues of bias and confounding, limiting the robustness of any conclusions around effectiveness. CONCLUSIONS: Currently available evidence is compatible with favourable outcomes from CI in children with ANSD. However, this evidence is weak. Stronger evidence is needed to support cost-effective clinical policy and practice in this area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Ph.D, Neuroscience Studies) -- Queen's University, 2016-08-27 00:55:35.782

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Seizures are harmful to the neonatal brain; this compels many clinicians and researchers to persevere further in optimizing every aspects of managing neonatal seizures. Aims To delineate the seizure profile between non-cooled versus cooled neonates with hypoxic-ischaemic encephalopathy (HIE), in neonates with stroke, the response of seizure burden to phenobarbitone and to quantify the degree of electroclinical dissociation (ECD) of seizures. Methods The multichannel video-EEG was used in this research study as the gold standard to detect seizures, allowing accurate quantification of seizure burden to be ascertained in term neonates. The entire EEG recording for each neonate was independently reviewed by at least 1 experienced neurophysiologist. Data were expressed in medians and interquartile ranges. Linear mixed models results were presented as mean (95% confidence interval); p values <0.05 were deemed as significant. Results Seizure burden in cooled neonates was lower than in non-cooled neonates [60(39-224) vs 203(141-406) minutes; p=0.027]. Seizure burden was reduced in cooled neonates with moderate HIE [49(26-89) vs 162(97-262) minutes; p=0.020] when compared with severe HIE. In neonates with stroke, the background pattern showed suppression over the infarcted side and seizures demonstrated a characteristic pattern. Compared with 10 mg/kg, phenobarbitone doses at 20 mg/kg reduced seizure burden (p=0.004). Seizure burden was reduced within 1 hour of phenobarbitone administration [mean (95% confidence interval): -14(-20 to -8) minutes/hour; p<0.001], but seizures returned to pre-treatment levels within 4 hours (p=0.064). The ECD index in cooled, non-cooled neonates with HIE, stroke and in neonates with other diagnoses were 88%, 94%, 64% and 75% respectively. Conclusions Further research exploring the treatment effects on seizure burden in the neonatal brain is required. A change to our current treatment strategy is warranted as we continue to strive for more effective seizure control, anchored with use of the multichannel EEG as the surveillance tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that self-generated stimuli are processed differently from externally generated stimuli. For example, many people have noticed since childhood that it is very difficult to make a self-tickling. In the auditory domain, self-generated sounds elicit smaller brain responses as compared to externally generated sounds, known as the sensory attenuation (SA) effect. SA is manifested in reduced amplitudes of evoked responses as measured through MEEG, decreased firing rates of neurons and a lower level of perceived loudness for self-generated sounds. The predominant explanation for SA is based on the idea that self-generated stimuli are predicted (e.g., the forward model account). It is the nature of their predictability that is crucial for SA. On the contrary, the sensory gating account emphasizes a general suppressive effect of actions on sensory processing, regardless of the predictability of the stimuli. Both accounts have received empirical support, which suggests that both mechanisms may exist. In chapter 2, three behavioural studies concerning the influence of motor activation on auditory perception were presented. Study 1 compared the effect of SA and attention in an auditory detection task and showed that SA was present even when substantial attention was paid to unpredictable stimuli. Study 2 compared the loudness perception of tones generated by others between Chinese and British participants. Compared to externally generated tones, a decrease in perceived loudness for others generated tones was found among Chinese but not among the British. In study 3, partial evidence was found that even when reading words that are related to action, auditory detection performance was impaired. In chapter 3, the classic SA effect of M100 suppression was replicated with MEG in study 4. With time-frequency analysis, a potential neural information processing sequence was found in auditory cortex. Prior to the onset of self-generated tones, there was an increase of oscillatory power in the alpha band. After the stimulus onset, reduced gamma power and alpha/beta phase locking were found. The three temporally segregated oscillatory events correlated with each other and with SA effect, which may be the underlying neural implementation of SA. In chapter 4, a TMS-MEG study was presented investigating the role of the cerebellum in adapting to delayed presentation of self-generated tones (study 5). It demonstrated that in sham stimulation condition, the brain can adapt to the delay (about 100 ms) within 300 trials of learning by showing a significant increase of SA effect in the suppression of M100, but not M200 component. Whereas after stimulating the cerebellum with a suppressive TMS protocol, the adaptation in M100 suppression disappeared and the pattern of M200 suppression reversed to M200 enhancement. These data support the idea that the suppressive effect of actions on auditory processing is a consequence of both motor driven sensory predictions and general sensory gating. The results also demonstrate the importance of neural oscillations in implementing SA effect and the critical role of the cerebellum in learning sensory predictions under sensory perturbation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Throughout the twentieth century, the study of auditory perception emerged as a significant area of inquiry across various disciplines, particularly within the fields of poststructuralism and psychoanalysis. These theories converge in their understanding of hearing as a fundamental aspect of the development of the subject, leading to a decentering and reformulation of the autobiographical subject, suggesting that the rhythmic is a state of being outside of and prior to the social, verbal, thinking subject. This research aims to examine the connection between auditory perception and the formation of subjectivity in twentieth-century self-narratives. Drawing both from psychoanalysis and poststructuralism, this research proposes a reading of three autobiographical works, namely Elias Canetti’s Die gerettete Zunge, Nathalie Ginzburg’s Lessico famigliare and Nathalie Sarraute’s Enfance. By highlighting the importance of the voice and of the sonorous envelope of childhood, these works artistically anticipate what would be theorised only a few decades later and create the conditions for a pre-verbal apprehension of the world, raising questions about the ineffable source of writing and the writing process itself.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La decodifica dei segnali elettroencefalografici (EEG) consiste nell’analisi del segnale per classificare le azioni o lo stato cognitivo di un soggetto. Questi studi possono permettere di comprendere meglio i correlati neurali alla base del movimento, oltre che avere un’applicazione pratica nelle Brain Computer Interfaces. In questo ambito, di rilievo sono le reti neurali convoluzionali (Convolutional Neural Networks, CNNs), che grazie alle loro elevate performance stanno acquisendo importanza nella decodifica del segnale EEG. In questo elaborato di tesi è stata addestrata una CNN precedentemente proposta in letteratura, EEGNet, per classificare i segnali EEG acquisiti durante movimenti di reaching del braccio dominante, sulla base della posizione del target da raggiungere. I dati sono stati acquisiti su dieci soggetti grazie al protocollo sviluppato in questo lavoro, in cui 5 led disposti su una semicirconferenza rappresentano i target del movimento e l’accensione casuale di un led identifica il target da raggiungere in ciascuna prova. I segnali EEG acquisiti sono stati quindi ricampionati, filtrati e suddivisi in epoche di due secondi attorno all’inizio di ciascun movimento, rimuovendo gli artefatti oculari mediante ICA. La rete è stata valutata in tre task di classificazione, uno a cinque classi (una posizione target per classe) e due a tre classi (raggruppando più posizioni target per classe). Per ogni task, la rete è stata addestrata in cross-validazione utilizzando un approccio within-subject. Con questo approccio sono state addestrate e validate 15 CNNs diverse per ogni soggetto. Infine, è stato calcolato l’F1 score per ciascun task di classificazione, mediando i risultati sui soggetti, per valutare quantitativamente le performance della CNN che sono risultati migliori nel classificare target disposti a destra e a sinistra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il miglioramento dell'assistenza e dei risultati dei pazienti si basano attualmente sullo sviluppo e sulla convalida di nuovi farmaci e tecnologie, soprattutto in campi in rapida evoluzione come la Cardiologia Interventistica. Tuttavia, al giorno d’oggi ancora poca attenzione è rivolta ai professionisti che effettuano tali operazioni, il cui sforzo cognitivo-motorio è essenziale per la riuscita degli interventi. L’ottimizzazione delle prestazioni e dell'organizzazione del lavoro è essenziale in quanto influisce sul carico di lavoro mentale dell'operatore e può determinare l'efficacia dell'intervento e l'impatto sulla prognosi dei pazienti. È stato ampiamente dimostrato che diverse funzioni cognitive, tra cui l'affaticamento mentale comporta alcuni cambiamenti nei segnali elettroencefalografici. Vi sono diversi marcatori dei segnali EEG ciascuno con una determinata ampiezza, frequenza e fase che permettono di comprendere le attività cerebrali. Per questo studio è stato utilizzato un modello di analisi spettrale elettroencefalografica chiamato Alpha Prevalence (AP), che utilizza le tre onde alpha, beta e theta, per mettere in correlazione i processi cognitivi da un lato e le oscillazioni EEG dall’altro. Questo elaborato, condotto insieme all’azienda Vibre, prende in esame il cambiamento dell’AP, all’interno di una popolazione di cardiologi interventisti che effettuano interventi in cath-lab presso l’ospedale universitario di Ferrara, per valutare la condizione di affaticamento mentale o di eccessiva sonnolenza. L’esperimento prevede la registrazione del segnale EEG nei partecipanti volontari durante gli interventi e durante le pause nel corso dell’intero turno di lavoro. Lo scopo sarà quello di rilevare i cambiamenti nella metrica dell’alpha prevalence al variare del carico attentivo: ossia al variare delle risorse attentive richieste dal compito in relazione all’aumentare del tempo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amplitude of motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) shows a large variability from trial to trial, although MEPs are evoked by the same repeated stimulus. A multitude of factors is believed to influence MEP amplitudes, such as cortical, spinal and motor excitability state. The goal of this work is to explore to which degree the variation in MEP amplitudes can be explained by the cortical state right before the stimulation. Specifically, we analyzed a dataset acquired on eleven healthy subjects comprising, for each subject, 840 single TMS pulses applied to the left M1 during acquisition of electroencephalography (EEG) and electromyography (EMG). An interpretable convolutional neural network, named SincEEGNet, was utilized to discriminate between low- and high-corticospinal excitability trials, defined according to the MEP amplitude, using in input the pre-TMS EEG. This data-driven approach enabled considering multiple brain locations and frequency bands without any a priori selection. Post-hoc interpretation techniques were adopted to enhance interpretation by identifying the more relevant EEG features for the classification. Results show that individualized classifiers successfully discriminated between low and high M1 excitability states in all participants. Outcomes of the interpretation methods suggest the importance of the electrodes situated over the TMS stimulation site, as well as the relevance of the temporal samples of the input EEG closer to the stimulation time. This novel decoding method allows causal investigation of the cortical excitability state, which may be relevant for personalizing and increasing the efficacy of therapeutic brain-state dependent brain stimulation (for example in patients affected by Parkinson’s disease).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alpha oscillatory activity has long been associated with perceptual and cognitive processes related to attention control. The aim of this study is to explore the task-dependent role of alpha frequency in a lateralized visuo-spatial detection task. Specifically, the thesis focuses on consolidating the scientific literature's knowledge about the role of alpha frequency in perceptual accuracy, and deepening the understanding of what determines trial-by-trial fluctuations of alpha parameters and how these fluctuations influence overall task performance. The hypotheses, confirmed empirically, were that different implicit strategies are put in place based on the task context, in order to maximize performance with optimal resource distribution (namely alpha frequency, associated positively with performance): “Lateralization” of the attentive resources towards one hemifield should be associated with higher alpha frequency difference between contralateral and ipsilateral hemisphere; “Distribution” of the attentive resources across hemifields should be associated with lower alpha frequency difference between hemispheres; These strategies, used by the participants according to their brain capabilities, have proven themselves adaptive or maladaptive depending on the different tasks to which they have been set: "Distribution" of the attentive resources seemed to be the best strategy when the distribution probability between hemifields was balanced: i.e. the neutral condition task. "Lateralization" of the attentive resources seemed to be more effective when the distribution probability between hemifields was biased towards one hemifield: i.e., the biased condition task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I recenti sviluppi nel campo dell’intelligenza artificiale hanno permesso una più adeguata classificazione del segnale EEG. Negli ultimi anni è stato dimostrato come sia possibile ottenere ottime performance di classificazione impiegando tecniche di Machine Learning (ML) e di Deep Learning (DL), facendo uso, per quest’ultime, di reti neurali convoluzionali (Convolutional Neural Networks, CNN). In particolare, il Deep Learning richiede molti dati di training mentre spesso i dataset per EEG sono limitati ed è difficile quindi raggiungere prestazioni elevate. I metodi di Data Augmentation possono alleviare questo problema. Partendo da dati reali, questa tecnica permette, la creazione di dati artificiali fondamentali per aumentare le dimensioni del dataset di partenza. L’applicazione più comune è quella di utilizzare i Data Augmentation per aumentare le dimensioni del training set, in modo da addestrare il modello/rete neurale su un numero di campioni più esteso, riducendo gli errori di classificazione. Partendo da questa idea, i Data Augmentation sono stati applicati in molteplici campi e in particolare per la classificazione del segnale EEG. In questo elaborato di tesi, inizialmente, vengono descritti metodi di Data Augmentation implementati nel corso degli anni, utilizzabili anche nell’ambito di applicazioni EEG. Successivamente, si presentano alcuni studi specifici che applicano metodi di Data Augmentation per migliorare le presentazioni di classificatori basati su EEG per l’identificazione dello stato sonno/veglia, per il riconoscimento delle emozioni, e per la classificazione di immaginazione motoria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La valutazione del segnale elettroencefalografico acquisito durante compiti di Working Memory è utile per indagare regioni e meccanismi cerebrali alla base della capacità di immagazzinare le informazioni provenienti dall’ambiente rilevanti per il task da svolgere e di inibire stimoli irrilevanti/distraenti. In questo lavoro di Tesi è stato condotto uno studio su 13 volontari che hanno svolto un compito di memoria di lavoro visiva, consistente di prove ripetute (trial) ognuna composta di diverse fasi: Encoding (memorizzazione del memory set), Retention (mantenimento in memoria) in cui si mostra un distrattore, che può essere weak (poco interferente) o strong (maggiormente interferente). Ciascun trial termina con la comparsa della Probe, a cui il soggetto deve rispondere indicando se apparteneva o meno al memory set. Durante il task è stato acquisito il segnale EEG da 64 elettrodi, ed analizzato per indagare i potenziali evocati (ERPs) e la sincronizzazione/desincronizzazione in banda alpha (8-12 Hz) e theta (4-8 Hz) correlata agli stimoli visivi; è stata svolta anche un’analisi preliminare ricostruendo l’attività delle sorgenti corticali dal segnale EEG. Dalle analisi emerge che gli ERPs sono visibili principalmente nelle fasi di Encoding e Distractor, e nelle regioni fronto-centrali e parieto-occipitali, e che nella fase di Distractor sono maggiori per distrattore weak rispetto a strong. Si conferma la natura inibitoria del ritmo alpha e il ruolo del ritmo theta nei processi cognitivi; infatti la potenza in banda alpha aumenta nella fase pre-distrattore (sia weak che strong) e la potenza in banda theta è sostenuta durante l’intero task. Non si osservano differenze in banda alpha e theta tra i due distrattori nella fase pre-distrattore, mentre si osserva una modulazione durante la presentazione del distrattore.