987 resultados para atoms
Resumo:
Spin valves have revolutionized the field of magnetic recording and memory devices. Spin valves are generally realized in thin film heterostructures, where two ferromagnetic (FM) layers are separated by a nonmagnetic conducting layer. Here, we demonstrate spin-valve-like magnetoresistance at room temperature in a bulk ferrimagnetic material that exhibits a magnetic shape memory effect. The origin of this unexpected behavior in Mn2NiGa has been investigated by neutron diffraction, magnetization, and ab initio theoretical calculations. The refinement of the neutron diffraction pattern shows the presence of antisite disorder where about 13% of the Ga sites are occupied by Mn atoms. On the basis of the magnetic structure obtained from neutron diffraction and theoretical calculations, we establish that these antisite defects cause the formation of FM nanoclusters with parallel alignment of Mn spin moments in a Mn2NiGa bulk lattice that has antiparallel Mn spin moments. The direction of the Mn moments in the soft FM cluster reverses with the external magnetic field. This causes a rotation or tilt in the antiparallel Mn moments at the cluster-lattice interface resulting in the observed asymmetry in magnetoresistance.
Resumo:
Backbone alkylation has been shown to result in a dramatic reduction in the conformational space that is sterically accessible to a-amino acid residues in peptides. By extension, the presence of geminal dialkyl substituents at backbone atoms also restricts available conformational space for beta and ? residues. Five peptides containing the achiral beta 2,2-disubstituted beta-amino acid residue, 1-(aminomethyl)cyclohexanecarboxylic acid (beta 2,2Ac6c), have been structurally characterized in crystals by X-ray diffraction. The tripeptide Boc-Aib-beta 2,2Ac6c-Aib-OMe (1) adopts a novel fold stabilized by two intramolecular H-bonds (C11 and C9) of opposite directionality. The tetrapeptide Boc-Aib-beta 2,2Ac6c]2-OMe (2) and pentapeptide Boc-Aib-beta 2,2Ac6c]2-Aib-OMe (3) form short stretches of a hybrid a beta C11 helix stabilized by two and three intramolecular H-bonds, respectively. The structure of the dipeptide Boc-Aib-beta 2,2Ac6c-OMe (5) does not reveal any intramolecular H-bond. The aggregation pattern in the crystal provides an example of an extended conformation of the beta 2,2Ac6c residue, forming a polar sheet like H-bond. The protected derivative Ac-beta 2,2Ac6c-NHMe (4) adopts a locally folded gauche conformation about the C beta?Ca bonds (?=-55.7 degrees). Of the seven examples of beta 2,2Ac6c residues reported here, six adopt gauche conformations, a feature which promotes local folding when incorporated into peptides. A comparison between the conformational properties of beta 2,2Ac6c and beta 3,3Ac6c residues, in peptides, is presented. Backbone torsional parameters of H-bonded a beta/beta a turns are derived from the structures presented in this study and earlier reports.
Resumo:
We use a self-consistent strong-coupling expansion for the self-energy (perturbation theory in the hopping) to describe the nonequilibrium dynamics of strongly correlated lattice fermions. We study the three-dimensional homogeneous Fermi-Hubbard model driven by an external electric field showing that the damping of the ensuing Bloch oscillations depends on the direction of the field and that for a broad range of field strengths a long-lived transient prethermalized state emerges. This long-lived transient regime implies that thermal equilibrium may be out of reach of the time scales accessible in present cold atom experiments but shows that an interesting new quasiuniversal transient state exists in nonequilibrium governed by a thermalized kinetic energy but not a thermalized potential energy. In addition, when the field strength is equal in magnitude to the interaction between atoms, the system undergoes a rapid thermalization, characterized by a different quasiuniversal behavior of the current and spectral function for different values of the hopping. DOI: 10.1103/PhysRevLett.109.260402
Resumo:
The solution structure of IlvN, the regulatory subunit of Escherichia coil acetohydroxyacid synthase I, in the valine-bound form has been determined using high-resolution multidimensional, multinuclear nuclear magnetic resonance (NMR) methods. IlvN in the presence or absence of the effector molecule is present as a 22.5 kDa dimeric molecule. The ensemble of 20 low-energy structures shows a backbone root-mean-square deviation of 0.73 +/- 0.13 angstrom and a root-mean-square deviation of 1.16 +/- 0.13 angstrom for all heavy atoms. Furthermore, more than 98% of the backbone phi and psi dihedral angles occupy the allowed and additionally allowed regions of the Ramachandran map, which is indicative of the fact that the structures are of high stereochemical quality. Each protomer exhibits a beta alpha beta beta alpha beta alpha topology that is a characteristic feature of the ACT domain seen in metabolic enzymes. In the valine-bound form, IlvN exists apparently as a single conformer. In the free form, IlvN exists as a mixture of conformational states that are in intermediate exchange on the NMR time scale. Thus, a large shift in the conformational equilibrium is observed upon going from the free form to the bound form. The structure of the valine-bound form of IlvN was found to be similar to that of the ACT domain of the unliganded form of IlvH. Comparisons of the structures of the unliganded forms of these proteins suggest significant differences. The structural and conformational properties of IlvN determined here have allowed a better understanding of the mechanism of regulation of branched chain amino acid biosynthesis.
Resumo:
Single-layer graphene (SLG), the 3.4 angstrom thick two-dimensional sheet of sp(2) carbon atoms, was first prepared in 2004 by mechanical exfoliation of graphite crystals using the scotch tape technique. Since then, SLG has been prepared by other physical methods such as laser irradiation or ultrasonication of graphite in liquid media. Chemical methods of synthesis of SLG are more commonly used; the most popular involves preparation of single-layer graphene oxide followed by reduction with a stable reagent, often assisted by microwave heating. This method yields single-layer reduced graphene oxide. Other methods for preparing SLG include chemical vapour deposition over surfaces of transition metals such as Ni and Cu. Large-area SLG has also been prepared by epitaxial growth over SIC. Few-layer graphene (FLG) is prepared by several methods; arc discharge of graphite in hydrogen atmosphere being the most convenient. Several other methods for preparing FLG include exfoliation of graphite oxide by rapid heating, ultrasonication or laser irradiation of graphite in liquid media, reduction of few-layer graphene oxide, alkali metal intercalation followed by exfoliation. Graphene nanoribbons, which are rectangular strips of graphene, are best prepared by the unzipping of carbon nanotubes by chemical oxidation or laser irradiation. Many graphene analogues of inorganic materials such as MoS2, MoSe2 and BN have been prepared by mechanical exfoliation, ultrasonication and by chemical methods involving high-temperature or hydrothermal reactions and intercalation of alkali metals followed by exfoliation. Scrolls of graphene are prepared by potassium intercalation in graphite or by microwave irradiation of graphite immersed in liquid nitrogen.
Resumo:
The problem of human detection is challenging, more so, when faced with adverse conditions such as occlusion and background clutter. This paper addresses the problem of human detection by representing an extracted feature of an image using a sparse linear combination of chosen dictionary atoms. The detection along with the scale finding, is done by using the coefficients obtained from sparse representation. This is of particular interest as we address the problem of scale using a scale-embedded dictionary where the conventional methods detect the object by running the detection window at all scales.
Resumo:
The solvated metal atom dispersion (SMAD) method has been used for the synthesis of colloids of metal nanoparticles. It is a top-down approach involving condensation of metal atoms in low temperature solvent matrices in a SMAD reactor maintained at 77 K. Warming of the matrix results in a slurry of metal atoms that interact with one another to form particles that grow in size. The organic solvent solvates the particles and acts as a weak capping agent to halt/slow down the growth process to a certain extent. This as-prepared colloid consists of metal nanoparticles that are quite polydisperse. In a process termed as digestive ripening, addition of a capping agent to the as-prepared colloid which is polydisperse renders it highly monodisperse either under ambient or thermal conditions. In this, as yet not well-understood process, smaller particles grow and the larger ones diminish in size until the system attains uniformity in size and a dynamic equilibrium is established. Using the SMAD method in combination with digestive ripening process, highly monodisperse metal, core-shell, alloy, and composite nanoparticles have been synthesized. This article is a review of our contributions together with some literature reports on this methodology to realize various nanostructured materials.
Resumo:
We report resonant Raman scattering of MoS2 layers comprising of single, bi, four and seven layers, showing a strong dependence on the layer thickness. Indirect band gap MoS2 in bulk becomes a direct band gap semiconductor in the monolayer form. New Raman modes are seen in the spectra of single- and few-layer MoS2 samples which are absent in the bulk. The Raman mode at similar to 230 cm(-1) appears for two, four and seven layers. This mode has been attributed to the longitudinal acoustic phonon branch at the M point (LA(M)) of the Brillouin zone. The mode at similar to 179 cm(-1) shows asymmetric character for a few-layer sample. The asymmetry is explained by the dispersion of the LA(M) branch along the G-M direction. The most intense spectral region near 455 cm(-1) shows a layer-dependent variation of peak positions and relative intensities. The high energy region between 510 and 645 cm(-1) is marked by the appearance of prominent new Raman bands, varying in intensity with layer numbers. Resonant Raman spectroscopy thus serves as a promising non invasive technique to accurately estimate the thickness of MoS2 layers down to a few atoms thick. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
Ag-Fe nanoparticles with a highly Ag rich average composition were synthesized by the sonochemical route. Silver-iron system exhibits a wide miscibility gap in the bulk materials. Interestingly, a graded compositional profile along the nanoparticle radius was observed. Regions at and near the surface of the nanoparticle contained both Ag and Fe atoms. The composition got relatively deficient Fe towards the center of the particle with particle core made up of pure Ag. Alloying of Ag and Fe is confirmed by the absence of diffraction signal corresponding to pure Fe phase and presence of a paramagnetic phase in nanoparticles containing a diamagnetic (Ag) and ferromagnetic (Fe) elements.
Resumo:
When an electron is injected into liquid helium, it forces open a cavity that is free of helium atoms (an electron bubble). If the electron is in the ground 1S state, this bubble is spherical. By optical pumping it is possible to excite a significant fraction of the electron bubbles to the 1P state; the bubbles then lose spherical symmetry. We present calculations of the energies of photons that are needed to excite these 1P bubbles to higher energy states (1D and 2S) and the matrix elements for these transitions. Measurement of these transition energies would provide detailed information about the shape of the 1P bubbles.
Resumo:
Nano structured carbon nitride films were prepared by pyrolysis assisted chemical vapour deposition. Pyrrole (C4H5N), Pyrrolidine (C4H9N), Azabenzimidazole (C6H5N3) and Triazine (C6H15N3) were used as precursors. The vibrational modes observed for C–N and C = N from FTIR spectra confirms the bonding of nitrogen with carbon. XPS core level spectra of C 1s and N 1s also show the formation of bonding between carbon and nitrogen atoms. The nitrogen content in the prepared samples was found to be around 25 atomic %.
Resumo:
The main theme of this paper is to study the flammability suppression of hydrocarbons by blending with carbon dioxide, and to evaluate these mixtures as possible working fluids in organic Rankine cycle for medium temperature concentrated solar power applications. The analysis takes into account inevitable irreversibilities in the turbine, the pump, and heat exchangers. While the isopentane + CO2 mixture suffers from high irreversibility mainly in the regenerator owing to a large temperature glide, the propane + CO2 mixture performs more or less the same as pure propane albeit with high cycle pressures. In general, large temperature glides at condensing pressures extend the heat recovery into the two-phase dome, which is an advantage. However, at the same time, the shift of the pinch point towards the warm end of the regenerator is found to be a major cause of irreversibility. In fact, as the number of carbon atoms in alkanes decreases, their blend with CO2 moves the pinch point to the colder end of the regenerator. This results in lower entropy generation in the regenerator and improved cycle efficiency of propane + CO2 mixtures. With this mixture, real cycle efficiencies of 15-18% are achievable at a moderate source temperature of 573 K. Applicability for a wide range of source temperatures is found to be an added advantage of this mixture.
Resumo:
Reports on the alloys formed from immiscible atoms when they are contained in a nano-sized system have initiated several research activities in the recent years. Bridging of the miscibility gap at nanoscale is significant as it has the potential to produce novel alloy materials with useful technological applications. Although the literature contains noticeable number of reports on the formation of solid solution between bulk immiscible atoms, several issues related to phase stability and microstructure remain unaddressed. This article discusses some of these issues using examples from the work done by the author's research group on isolated nanoparticles of bulk immiscible binary systems such as Ag-Ni, Ag-Fe and Ag-Co.
Resumo:
Motivated by experiments on Josephson junction arrays in a magnetic field and ultracold interacting atoms in an optical lattice in the presence of a ``synthetic'' orbital magnetic field, we study the ``fully frustrated'' Bose-Hubbard model and quantum XY model with half a flux quantum per lattice plaquette. Using Monte Carlo simulations and the density matrix renormalization group method, we show that these kinetically frustrated boson models admit three phases at integer filling: a weakly interacting chiral superfluid phase with staggered loop currents which spontaneously break time-reversal symmetry, a conventional Mott insulator at strong coupling, and a remarkable ``chiral Mott insulator'' (CMI) with staggered loop currents sandwiched between them at intermediate correlation. We discuss how the CMI state may be viewed as an exciton condensate or a vortex supersolid, study a Jastrow variational wave function which captures its correlations, present results for the boson momentum distribution across the phase diagram, and consider various experimental implications of our phase diagram. Finally, we consider generalizations to a staggered flux Bose-Hubbard model and a two-dimensional (2D) version of the CMI in weakly coupled ladders.
Resumo:
A comprehensive study of D-Na center dot center dot center dot A (D = H/F) complexes has been done using advanced ab initio and atoms in molecule (AIM) theoretical analyses. The correlation between electron density at bond critical point and binding energy gives a distinguishing feature for hydrogen bonding, different from the `electrostatic complexes' formed by LiD and NaD. Moreover, the LiD/NaD dimers have both linear and anti-parallel minima, as expected for electrostatic dipole-dipole interactions. The HF dimer has a quasi-linear minimum and the anti-parallel structure is a saddle point. Clearly, characterizing hydrogen bonding as `nothing but electrostatic interaction between two dipoles' is grossly in error.