885 resultados para arbitrary sharing configurations


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We model interface formation by metal deposition on the conjugated polymer poly-para-phenylene vinylene, studying direct aluminum and layered aluminum-calcium structures Al/PPV and Al/Ca/PPV. To do that we use classical molecular dynamics simulations, checked by ab initio density-functional theory calculations, for selected relevant configurations. We find that Al not only migrates easily into the film, with a strong charge transfer to the neighboring chains, but also promotes rearrangement of the polymer in the interfacial region to the hexagonal structure. On the other hand, our results indicate that a thin Ca layer is sufficient to protect the film and maintain a well-defined metal/polymer interface, and that also a thin Al capping layer may protect the whole from environmental degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the effect of quantum confinement in Mn-doped InAs nanocrystals using theoretical methods. We observe that the stability of the impurities decreases with the size of the nanocrystals, making doping more difficult in small nanoparticles. Substitutional impurities are always more stable than interstitial ones, independent of the size of the nanocrystal. There is also a decrease in the energy difference between the high and low spin configurations, indicating that the critical temperature should decrease with the size of the nanoparticles, in agreement with experimental observations and in detriment to the development of functional spintronic devices with doped nanocrystals. Codoping with acceptors or saturating the nanocrystals with molecules that insert partially empty levels in the energy gap should be an efficient way to increase T(C).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the measurement of nonphotonic electron production at high transverse momentum (p(T) > 2.5 GeV/c) in p + p collisions at root s = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured nonphotonic electron cross sections with previously published RHIC data and perturbative quantum chromodynamics calculations. Using the relative contributions of B and D mesons to nonphotonic electrons, we determine the integrated cross sections of electrons (e++e-2/2) at 3 GeV/c < p(T) < 10 GeV/c from bottom and charm meson decays to be [(d sigma((B -> e)+(B -> D -> e))/(dy(e))](ye=0) 4.0 +/- 0.5(stat) +/- 1.1(syst) nb and [(d sigma(D -> e))/(dy(e))](ye=0) = 6.2 +/- 0.7(stat) +/- 1.5(syst) nb, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recent analysis of the (12)C + (24)Mg scattering [W. Sciani et al., Phys. Rev. C 80, 034319 (2009)] suggests the existence of a hyperdeformed band in the (36)Ar nucleus, completely in line with the predictions of alpha [W. D. M. Rae and A. C. Merchant, Phys. Lett. B279, 207 (1992)] and binary cluster calculations [J. Cseh et al., Phys. Rev. C 70, 034311 (2004)]. Here we review the structural understanding of the superdeformed and the hyperdeformed states of (36)Ar and present new results on the shape isomers as well. Special attention is paid to the clusterization of these states, which indicates the appropriate reaction channels for their formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantum field theory with an external background can be considered as a consistent model only if backreaction is relatively small with respect to the background. To find the corresponding consistency restrictions on an external electric field and its duration in QED and QCD, we analyze the mean-energy density of quantized fields for an arbitrary constant electric field E, acting during a large but finite time T. Using the corresponding asymptotics with respect to the dimensionless parameter eET(2), one can see that the leading contributions to the energy are due to the creation of particles by the electric field. Assuming that these contributions are small in comparison with the energy density of the electric background, we establish the above-mentioned restrictions, which determine, in fact, the time scales from above of depletion of an electric field due to the backreaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have obtained nonperturbative one-loop expressions for the mean-energy-momentum tensor and current density of Dirac's field on a constant electriclike back-round. One of the goals of this calculation is to give a consistent description of backreaction in such a theory. Two cases of initial states are considered: the vacuum state and the thermal equilibrium state. First, we perform calculations for the vacuum initial state. In the obtained expressions, we separate the contributions due to particle creation and vacuum polarization. The latter contribution,, are related to the Heisenberg-Euler Lagrangian. Then, we Study the case of the thermal initial state. Here, we separate the contributions due to particle creation, vacuum polarization, and the contributions due to the work of the external field on the particles at the initial state. All these contributions are studied in detail, in different regimes of weak and strong fields and low and high temperatures. The obtained results allow us to establish restrictions on the electric field and its duration under which QED with a strong constant electric field is consistent. Under such restrictions, one can neglect the backreaction of particles created by the electric field. Some of the obtained results generalize the calculations of Heisenberg-Euler for energy density to the case of arbitrary strong electric fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The absorption cross section of Reissner-Nordstroumlm black holes for the electromagnetic field is computed numerically for arbitrary frequencies, taking into account the coupling of the electromagnetic and gravitational perturbations. We also compute the conversion coefficients of electromagnetic to gravitational waves by scattering from a Reissner-Nordstroumlm black hole.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the quantum integrability of the Landau-Lifshitz (LL) model and solve the long-standing problem of finding the local quantum Hamiltonian for the arbitrary n-particle sector. The particular difficulty of the LL model quantization, which arises due to the ill-defined operator product, is dealt with by simultaneously regularizing the operator product and constructing the self-adjoint extensions of a very particular structure. The diagonalizibility difficulties of the Hamiltonian of the LL model, due to the highly singular nature of the quantum-mechanical Hamiltonian, are also resolved in our method for the arbitrary n-particle sector. We explicitly demonstrate the consistency of our construction with the quantum inverse scattering method due to Sklyanin [Lett. Math. Phys. 15, 357 (1988)] and give a prescription to systematically construct the general solution, which explains and generalizes the puzzling results of Sklyanin for the particular two-particle sector case. Moreover, we demonstrate the S-matrix factorization and show that it is a consequence of the discontinuity conditions on the functions involved in the construction of the self-adjoint extensions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the gravitational recoil due to nonreflection-symmetric gravitational wave emission in the context of axisymmetric Robinson-Trautman spacetimes. We show that regular initial data evolve generically into a final configuration corresponding to a Schwarzschild black hole moving with constant speed. For the case of (reflection-)symmetric initial configurations, the mass of the remnant black hole and the total energy radiated away are completely determined by the initial data, allowing us to obtain analytical expressions for some recent numerical results that have appeared in the literature. Moreover, by using the Galerkin spectral method to analyze the nonlinear regime of the Robinson-Trautman equations, we show that the recoil velocity can be estimated with good accuracy from some asymmetry measures (namely the first odd moments) of the initial data. The extension for the nonaxisymmetric case and the implications of our results for realistic situations involving head-on collision of two black holes are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The absorption cross section of Reissner-Nordstrom black holes for the electromagnetic field is computed numerically for arbitrary frequencies. The numerical results are in excellent agreement with the low- and high-frequency limits, which are obtained with analytical methods. Special emphasis is given to the extreme Reissner-Nordstrom black hole case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamics and mechanism of migration of a vacancy point defect in a two-dimensional (2D) colloidal crystal are studied using numerical simulations. We find that the migration of a vacancy is always realized by topology switching between its different configurations. From the temperature dependence of the topology switch frequencies, we obtain the activation energies for possible topology transitions associated with the vacancy diffusion in the 2D crystal. (C) 2011 American Institute of Physics. [doi:10.1063/1.3615287]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a class of solutions of the CP(N) model in (3 + 1) dimensions. We suggest that they represent vortexlike configurations. We also discuss some of their properties. We show that some configurations of vortices have a divergent energy per unit length while for the others such an energy has a minimum for a very special orientation of vortices. We also discuss the Noether charge densities of these vortices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In integrable one-dimensional quantum systems an infinite set of local conserved quantities exists which can prevent a current from decaying completely. For cases like the spin current in the XXZ model at zero magnetic field or the charge current in the attractive Hubbard model at half filling, however, the current operator does not have overlap with any of the local conserved quantities. We show that in these situations transport at finite temperatures is dominated by a diffusive contribution with the Drude weight being either small or even zero. For the XXZ model we discuss in detail the relation between our results, the phenomenological theory of spin diffusion, and measurements of the spin-lattice relaxation rate in spin chain compounds. Furthermore, we study the Haldane-Shastry model where a conserved spin current exists.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the propagation of perturbations in the quark gluon plasma. This subject has been addressed in other works and in most of the theoretical descriptions of this phenomenon the hydrodynamic equations have been linearized for simplicity. We propose an alternative approach, also based on hydrodynamics but taking into account the nonlinear terms of the equations. We show that these terms may lead to localized waves or even solitons. We use a simple equation of state for the QGP and expand the hydrodynamic equations around equilibrium configurations. The resulting differential equations describe the propagation of perturbations in the energy density. We solve them numerically and find that localized perturbations can propagate for long distances in the plasma. Under certain conditions our solutions mimic the propagation of Korteweg-de Vries solitons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the structural phase transitions in confined systems of strongly interacting particles. We consider infinite quasi-one-dimensional systems with different pairwise repulsive interactions in the presence of an external confinement following a power law. Within the framework of Landau's theory, we find the necessary conditions to observe continuous transitions and demonstrate that the only allowed continuous transition is between the single-and the double-chain configurations and that it only takes place when the confinement is parabolic. We determine analytically the behavior of the system at the transition point and calculate the critical exponents. Furthermore, we perform Monte Carlo simulations and find a perfect agreement between theory and numerics.